

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	diceware 0.7.1 documentation

Welcome to diceware documentation

Version: 0.7.1

[image: Build Status] [https://travis-ci.org/ulif/diceware]

	diceware
	Install

	Usage

	What is it good for?

	Is it secure?

	Developer Install

	Credits

	Links

	License

	Sources of Randomness
	System Random

	Real Dice

	Bring Your Own Source (for developers)

	Configuration Files
	Option Names

	Config File Name and Path

	Option Values

	Wordlists
	Add Own Wordlists

	Plain Wordlists

	Numbered Wordlists

	PGP-signed Wordlists

	API
	diceware main module

	diceware.config

	diceware.wordlist

	diceware.random_sources

	Changes
	0.7.1 (2016-04-21)

	0.7 (2016-04-17)

	0.6.1 (2015-12-15)

	0.6 (2015-12-15)

	0.5 (2015-08-05)

	0.4 (2015-03-30)

	0.3.1 (2015-03-29)

	0.3 (2015-03-28)

	0.2 (2015-03-27)

	0.1 (2015-02-18)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.7.1 documentation

diceware

Passphrases to remember...

[image: Build Status] [https://travis-ci.org/ulif/diceware] | documentation [https://diceware.readthedocs.org/] | sources [https://github.com/ulif/diceware] | issues [https://github.com/ulif/diceware/issues]

diceware is a passphrase generator following the proposals of
Arnold G. Reinhold on http://diceware.com . It generates passphrases
by concatenating words randomly picked from wordlists. For instance:

$ diceware
MyraPend93rdSixthEagleAid

The passphrase contains by default six words (with first char
capitalized) without any separator chars. Optionally you can let
diceware insert special chars into the passphrase.

diceware supports several sources of randomness (including real life
dice) and different wordlists (including cryptographically signed
ones).

Contents

	diceware
	Install

	Usage

	What is it good for?

	Is it secure?

	Developer Install
	Documentation Install

	Credits

	Links

	License

Install

This Python package can be installed via pip [https://pip.pypa.io/en/latest/]:

$ pip install diceware

The exact way depends on your operating system.

Usage

Once installed, use --help to list all available options:

$ diceware --help
Create a passphrase

positional arguments:
 INFILE Input wordlist. `-' will read from stdin.

optional arguments:
 -h, --help show this help message and exit
 -n NUM, --num NUM number of words to concatenate. Default: 6
 -c, --caps Capitalize words. This is the default.
 --no-caps Turn off capitalization.
 -s NUM, --specials NUM
 Insert NUM special chars into generated word.
 -d DELIMITER, --delimiter DELIMITER
 Separate words by DELIMITER. Empty string by default.
 -r SOURCE, --randomsource SOURCE
 Get randomness from this source. Possible values:
 `realdice', `system'. Default: system
 -w NAME, --wordlist NAME
 Use words from this wordlist. Possible values: `en',
 `en_orig', `en_securedrop'. Wordlists are stored in
 the folder displayed below. Default: en_securedrop
 --version output version information and exit.

With -n you can tell how many words are supposed to be picked for
your new passphrase:

$ diceware -n 1
Thud

$ diceware -n 2
KnitMargo

You can diceware additionally let generate special chars to replace
characters in the ‘normal’ passphrase. The number of special chars
generated can be determined with the -s option (default is zero):

$ diceware -s 2
Heroic%unkLon#DmLewJohns

Here "%" and "#" are the special chars.

Special chars are taken from the following list:

~!#$%^&*()-=+[]\{}:;\"'<>?/0123456789

Please note that several special chars might replace the same original
char, resulting in a passphrase with less special chars than requested.

With -d you can advise diceware to put a delimiter string
between the words generated:

$ diceware -d "_"
Wavy_Baden_400_Whelp_Quest_Macon

By default we use the empty string as delimiter, which is good for
copying via double click on Linux systems. But other delimiters might
make your passphrases more readable.

By default the single phrase words are capitalized, i.e. the first
char of each word is made uppercase. This does not neccessarily give
better security (1 bit at most), but it helps reading a phrase.

You can nevertheless disable caps with the --no-caps option:

$ diceware --no-caps
oceanblendbaronferrylistenvalet

This leads to lower-case passphrases, maybe easier to type on smart
phones or similar.

diceware supports also different sources of randomness, which can be
chosen with the -r <SOURCENAME> or --randomsource <SOURCENAME>
option. Use the --help option to list all valid values for this
option.

By default we use the random.SystemRandom [https://docs.python.org/3.4/library/random.html#random.SystemRandom] class of standard Python
lib but you can also bring your own dice to create randomness:

$ diceware -r realdice
Please roll 5 dice (or a single dice 5 times).
What number shows dice number 1? 2
What number shows dice number 2? 3
...
DogmaAnyShrikeSageSableHoar

We support even sources of randomness from other packages. See the
documentation [https://diceware.readthedocs.org/] for more details.

diceware comes with an English wordlist provided by Heartsucker,
which will be used by default and contains 8192 different words. This
list is based off the original diceware list written by Arnold G.
Reinhold.

Both the original and 8k diceware wordlists by Mr. Reinhold are provided.
You can enable a certain (installed) wordlist with the -w option:

$ diceware --wordlist en_orig
YorkNodePrickEchoToriNiobe

See diceware --help for a list of all installed wordlists.

If you do not like the wordlists provided, you can use your own
one. Any INFILE provided will be parsed line by line and each line
considered a possible word. For instance:

$ echo -e "hi\nhello\n" > mywordlist.txt
$ diceware mywordlist.txt
HelloHelloHiHiHiHello

With dash (-) as filename you can pipe in wordlists:

$ echo -e "hi\nhello\n" > mywordlist.txt
$ cat mywordlist.txt | diceware -
HiHiHelloHiHiHello

In custom wordlists we take each line for a valid word and ignore
empty lines (i.e. lines containing whitespace characters only). Oh,
and we handle even PGP-signed wordlists.

You can set customized default values in a configuration file
.diceware.ini (note the leading dot) placed in your home
directory. This file could look like this:

[diceware]
num = 7
caps = off
specials = 2
delimiter = "MYDELIMITER"
randomsource = "system"
wordlist = "en"

The options names have to match long argument names, as output by
--help. The values set must meet the requirements valid for
commandline usage. All options must be set within a section
[diceware].

What is it good for?

Normally, diceware passphrases are easier to remember than shorter
passwords constructed in more or less bizarre ways. But at the same
time diceware passphrases provide more entropy as xkcd [http://xkcd.com/] can show
with the famous ‘936’ proof [http://xkcd.com/936/]:

[image: http://imgs.xkcd.com/comics/password_strength.png]
 [http://xkcd.com/936/]The standard english wordlist of this diceware implementation
contains 8192 = 2**13 different english words. It is a hand-compiled
8192-words list provided by Heartsucker [https://github.com/heartsucker]. Therefore, picking a
random word from this list gives an entropy of 13 bits. Picking six
words means an entropy of 6 x 13 = 73 bits.

The special chars replacing chars of the originally created passphrase
give some more entropy (the more chars you have, the more additional
entropy), but not much. For instance, for a sixteen chars phrase you
have sixteen possibilities to place one of the 36 special chars. That
makes 36 x 16 possibilitities or an entropy of about 9.17 you can add.
To get an entropy increase of at least 10 bits, you have to put a
special char in a phrase with at least 29 chars (while at the same
time an additional word would give you 13 bits of extra
entropy). Therefore you might think again about using special chars in
your passphrase.

Is it secure?

The security level provided by Diceware [http://diceware.com/] depends heavily on your
source of random. If the delivered randomness is good, then your
passphrases will be very strong. If instead someone can foresee the
numbers generated by a random number generator, your passphrases will
be surprisingly weak.

This Python implementation uses (by default) the
random.SystemRandom [https://docs.python.org/3.4/library/random.html#random.SystemRandom] source provided by Python. On Un*x systems it
accesses /dev/urandom. You might want to follow reports about
manipulated random number generators in operating systems closely.

The Python API of this package allows usage of other sources of
randomness when generating passphrases. This includes real dice. See
the -r option.

Developer Install

Developers want to fork me on github [http://github.com/ulif/diceware/]:

$ git clone https://github.com/ulif/diceware.git

We recommend to create and activate a virtualenv [https://virtualenv.pypa.io/] first:

$ cd diceware/
$ virtualenv -p /usr/bin/python3.3 py33
$ source py33/bin/activate
(py33) $

We support Python versions 2.6, 2.7, 3.2, 3.3, 3.4, pypy.

Now you can create the devel environment:

(py33) $ python setup.py dev

This will fetch test packages (py.test [https://pytest.org/]). You should be able to run
tests now:

(py33) $ py.test

If you have also different Python versions installed you can use tox [https://tox.testrun.org/]
for using them all for testing:

(py33) $ pip install tox # only once
(py33) $ tox

Should run tests in all supported Python versions.

Documentation Install

The docs can be generated with Sphinx [https://sphinx-doc.org/]. The needed packages are
installed via:

(py33) $ python setup.py docs

To create HTML you have to go to the docs/ directory and use the
prepared Makefile:

(py33) $ cd docs/
(py33) $ make

This should generate the docs in docs/_build/html/.

Credits

Arnold G. Reinhold deserves all merits for the working parts of
Diceware [http://diceware.com/]. The non-working parts are certainly my fault.

People that helped spotting bugs, providing solutions, etc.:

	Conor Schaefer (conorsch) [https://github.com/conorsch]

	Rodolfo Gouveia suggested to activate the --delimiter option.

	drebs [https://github.com/drebs] provided patches and discussion for
different sources of randomness.

	Heartsucker [https://github.com/heartsucker] hand-compiled and
added a new english wordlist.

	dwcoder [https://github.com/dwcoder] revealed and fixed bug
#19. Also showed sound knowledge of (theoretical) entropy. A
pleasure to work with.

Many thanks to all of them!

Links

	The Diceware [http://diceware.com/] home page. Reading definitely recommended!

	fork me on github [http://github.com/ulif/diceware/]

Wordlists:

	Diceware8k list [http://world.std.com/~reinhold/diceware8k.txt] by Arnold G. Reinhold.

	Diceware SecureDrop list [https://github.com/heartsucker/diceware] by Heartsucer.

License

This Python implementation of Diceware, (C) 2015, 2016 Uli Fouquet, is
licensed under the GPL v3+.

The Copyright for the Diceware [http://diceware.com/] idea and the Diceware8k list [http://world.std.com/~reinhold/diceware8k.txt] are
Copyright by Arnold G. Reinhold. The Copyright for the the Diceware
SecureDrop list [https://github.com/heartsucker/diceware] are copyright by Heartsucker. See file LICENSE for details.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.7.1 documentation

Sources of Randomness

The security of your passphrase depends naturally heavily on the
source of randomness you use. If the source is good, it is really hard
to predict your passphrase. If it is bad, your passphrase might be
surprisingly easy to guess. diceware does not provide own
pseudo-random number generators or similar. Instead we let you choose
yourself the source of randomness you trust.

diceware supports different sources of randomness, which can be
chosen with the -r <SOURCENAME> or --randomsource <SOURCENAME>
option.

Use the --help option to list all valid values for the
--randomsource option.

Python-developers can provide their own source of randomness. If their
package is installed together with diceware (and their source is
registered correctly), diceware will offer their source as valid
option.

System Random

By default diceware uses the Python standard lib
random.SystemRandom [http://docs.python.org/library/random.html#random.SystemRandom] class to retrieve randomness. This class
calls an OS-specific source of randomness that returns data normally
unpredictable enough for our purposes. The quality of randomness
therefore depends on the quality of your OS implementation.

As a user you can enforce the use of this source of randomness with
the -r system option.

Please note that the Raspberry Pi is said to provide a hardware random
number generator that delivers “real randomness”. One has to enable it
system-wide to make it the active source of randomness on a Raspberry
Pi. If done properly, also randomSystemRandom (and hence
diceware) should use good quality random numbers.

Real Dice

diceware also supports real dice as source of randomness. You can
pick this source of randomness with the -r realdice option.:

$ diceware -r realdice
Warning: entropy is reduced!
Please roll 5 dice (or a single dice 5 times).
What number shows dice number 1? 1
What number shows dice number 2? 2
What number shows dice number 3? 3
What number shows dice number 4? 4
What number shows dice number 5? 5
Warning: entropy is reduced!
Please roll 5 dice (or a single dice 5 times).
What number shows dice number 1? 2
What number shows dice number 2? 3
What number shows dice number 3? 3
What number shows dice number 4? 5
What number shows dice number 5? 1

...

What number shows dice number 5? 3
AnyDogmaShrikeSageSableHoar

If you see a warning “entropy is reduced!”, this means that not the
whole range of the wordlist you use can be put to account. Instead we
use (in case of 5 rolls) the first 6^5 words only. If you use a
wordlist with 6^n elements (for instance the original list with 7776
elements of Mr. Rheinhold), you will not get this warning.

Currently we support only 6-sided dice.

Bring Your Own Source (for developers)

diceware uses Python entry-points for looking up sources of
randomness. That means you can write your own source of randomness in
Python, register it in your own package and once both, your package
and diceware are installed together on a system, your source of
randomness will be offered and used by diceware (if the user selects
it).

To build your own source of randomness you have to provide a class
with a constructor that accepts a single options object. Furthermore
a source of randomness has to provide a choice(sequence) method. It
comes down to something like that:

class MySourceOfRandomness(object):
 "Tell about your source..."
 def __init__(self, options):
 # initialize, etc.

 def choice(sequence):
 # return one of the elements in `sequence`

The choice() method will be called for each word of the passphrase
and for each special char. Please do not make assumptions about the
sequence passed to choice. It will be a list of “somethings” and be
indexable.

If your source is ready, you can register it in the setup.py of
your package like this:

setup.py

...

setup(

 ...

 entry_points={
 'diceware_random_sources': [
 'mysrc = mypkg.sources:MySourceOfRandomness',
 # add more sources of randomness here...
],
 }
)

Here we assume that you defined MySourceOfRandomness in a package
mypkg and a module called sources.

Once this package is installed, you can run diceware like this:

$ diceware -r mysrc

and your source of randomness will be used.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.7.1 documentation

Configuration Files

You can use configuration files to persistently override built-in
defaults and make your custom settings the default.

diceware configuration files follow simple .ini-style and look
like this:

[diceware]
num = 3
caps = off
specials = 2
delimiter = MYDELIMITER
randomsource = system
wordlist = en

These settings would mean that by default phrases with seven words
(instead six) would be created. Commandline options, however, override
config file settings. So, with the settings above:

$ diceware
Duma7YDELIMITER56MYDE^IMITERJock

we will get three-word phrases while with:

$ diceware --delimiter=FOO
AmuseFOO]us(FOO18th

we will override the config file setting for delimiter. Other
settings from config file are still valid.

Option Names

The options names have to match long argument names, as output with
--help. The values set must meet the requirements valid for
commandline usage.

You can use all or only some (or none) of the above options. Please
note that other entries, providing unknown option names, are
ignored. That means that also typos might lead to ignored entries.

Please note, that all options must be set within a section
[diceware].

Config File Name and Path

Currently, we look for configuration files only in the calling users’
home directory. The file must be called:

.diceware.ini

(please note the leading dot). If such a file is missing, build-in
defaults apply.

Option Values

The option values set can be strings, integers, or boolean
values.

diceware accepts yes, no, 1, 0, true, false,
on, and off as boolean values.

Some options require their setting to be taken from a fixed set of
names/values, for instance the randomsource option.

If some value cannot be parsed, an exception is raised.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.7.1 documentation

Wordlists

The passphrases generated by diceware naturally depend on the set of
words used, the wordlists.

diceware comes with some wordlists out-of-the-box, that might be a
good choice for usual private use.

By default we use a hand-crafted en_securedrop wordlist provided by
@Heartsucker [https://github.com/heartsucker/]. It contains 8,192 english words and phrases. This
list is based on the diceware standard wordlist [http://world.std.com/~reinhold/diceware.wordlist.asc] and extended to
offer better memorizable words. Please see
https://github.com/heartsucker/diceware for details. The name
en_securedrop refers to the securedrop [https://github.com/freedomofpress/securedrop] project.

Apart from it we also provide the so-called 8k wordlist [http://world.std.com/~reinhold/diceware8k.txt] from
Mr. Reinhold as published on http://diceware.com/. It also contains
8,192 english words and phrases and is something like the canonical
wordlist for use with binary-geared entities like computers or
nerds.

Warning

We do – by default – not use the diceware standard
wordlist [http://world.std.com/~reinhold/diceware.wordlist.asc] (which contains 7,776 words), because
computers prefer powers of two and we use the Python
standard lib random source by default (we do not want to
waste entropy).

But the “original” list is included in diceware as well
and you can pick it with the -w en_orig option. You
should pick it when you use real dice as source of
randomness.

You can pick another list with the -w or --wordlist option.

Add Own Wordlists

You can use any wordlist you like. Simply give the filename and it
will be used:

$ diceware mywordlist.txt
HiHelloHelloHiHiHi

You can even pipe-in dynamic wordlists. Just use the dash - as
filename:

$ cat mywordgenerator.sh | diceware -
HiHiHelloHiHiHello

for instance.

Of course you have to give the filenames of your files with each call
to diceware.

But, if you want to store a wordlist persistently, you can do so too.

The wordlists we offer for use with diceware are all stored in a
single folder. The exact location is output by --help at the very
end:

$ diceware --help
...
Wordlists are stored in /some/path/to/folder

Just put your own wordlists into this folder (here:
/some/path/to/folder) and rename the file to something like
wordlist_MY_SPECIAL_NAME.txt. Afterwards you can pick your
wordlist by running:

$ diceware -w MY_SPECIAL_NAME

diceware will use this file of yours then to create a
passphrase. Please note that diceware only accepts files that are
named like:

wordlist_NAME.txt

or:

wordlist_OTHER_NAME.asc

I.e. we expect wordlist_ at the beginning and some filename
extension like .txt at the end. Furthermore names must not contain
funny characters. In fact we accept regular letters, dashes, numbers,
and underscores only. Files that do not follow these naming convention
are ignored.

A list of all available wordlist names can also be retrieved with
--help. See the --wordlist explanation.

Plain Wordlists

Out of the box, diceware supports plain wordlists, PGP-signed
wordlists, and numbered wordlists. Plain wordlists look like this:

termone
termtwo
anotherterm

Each line in such a file is considered a word of the wordlist. Empty
lines are ignored.

Whitespaces are allowed if they are not at the beginning or end of a
line, stripped off otherwise.

Numbered Wordlists

Numbered wordlists contain numbers in each line, telling a
sequence of dice rolls like so:

11111 aterm
11112 anotherterm
...

diceware detects such lines and in this case extracts aterm and
anotherterm as wordlist entries.

PGP-signed Wordlists

PGP-signed wordlists are wordlists (ordinary or numbered ones), that
have been cryptographically signed with PGP or GPG. They look like
this:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

foo
bar
baz

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iJwEAQEKAAYFAlW00GEACgkQ+5ktCoLaPzSutwP8DVgdjBFqRXNKaZlvd8pR+P3k
8xx5XLC0OFwZQFx4Ls8xl3+/xfvCNxCGSZjD6BGPzNZCK7bmQQYWcrsoEyX5jAC3
dXjAPj0nct/PkJQlrUjUI2qrO0dFfU7sRj0Gn9TOlQQkKoQVwy7pY/6HaScGNepL
J8BNUPYdOWeVgxY1jSY=
=WXfu
-----END PGP SIGNATURE-----

and are normally stored with the .asc filename extension. Signed
wordlists can be verified to detect changes, although this is not
automatically done by diceware.

Warning

Diceware does not automatically verify PGP-signed
files.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.7.1 documentation

API

diceware code is geared towards commandline usage. You can, however,
use it from Python. The API docs are here to assist you with that.

For using diceware in your own, setuptools-based Python project,
you can add it as an install requirement in setup.py of your
project:

from setuptools import setup
...
setup(
 name="myproject",
 # ...
 install_requires=[
 # packages we depend on...
 'setuptools',
 'diceware',
 # ...
],
 # ...
)

Of course there are other ways to make diceware available.

diceware main module

diceware – rememberable passphrases

	
diceware.SPECIAL_CHARS = '~!#$%^&*()-=+[]\\{}:;"\'<>?/0123456789'

	Special chars inserted on demand

	
diceware.get_passphrase(options=None)[source]

	Get a diceware passphrase.

options is a set of arguments as provided by
argparse.OptionParser.parse_args().

The passphrase returned will contain options.num words deliimted by
options.delimiter and options.specials special chars.

For the passphrase generation we will use the random source
registered under the name options.randomsource (something like
“system” or “dice”).

If options.capitalize is True, all words will be capitalized.

If options.infile, a file descriptor, is given, it will be used
instead of a ‘built-in’ wordlist. options.infile must be open for
reading.

	
diceware.get_random_sources()[source]

	Get a dictionary of all entry points called diceware_random_source.

Returns a dictionary with names mapped to callables registered as
entry_point`s for the ``diceware_randomsource` group.

Callables should accept options when called and return something
that provides a choice(sequence) method that works like the
respective method in the standard Python lib random module.

	
diceware.handle_options(args)[source]

	Handle commandline options.

	
diceware.insert_special_char(word, specials='~!#$%^&*()-=+[]\\{}:;"\'<>?/0123456789', rnd=None)[source]

	Insert a char out of specials into word.

rnd, if passed in, will be used as a (pseudo) random number
generator. We use .choice() only.

Returns the modified word.

	
diceware.main(args=None)[source]

	Main programme.

Called when diceware script is called.

args is a list of command line arguments to process. If no such
args are given, we use sys.argv.

	
diceware.print_version()[source]

	Output current version and other infos.

diceware.config

config – diceware configuration

diceware is configurable via commandline, configuration files and
direct API calls.

	
diceware.config.get_config_dict(path_list=None)[source]

	Get config values found in files from path_list.

Read files in path_list config files and return option valus as
regular dictonary.

We only accept values for which a default exists in
OPTIONS_DEFAULTS.

Values are interpolated to have same value type as same-named values
from OPTIONS_DEFAULTS if they are integers or boolean.

	
diceware.config.get_configparser(path_list=None)[source]

	Parse path_list for config values.

If no list is given we use valid_locations().

Return a list of paths read and a config parser instance.

	
diceware.config.valid_locations()[source]

	The list of valid paths we look up for config files.

diceware.wordlist

wordlist.py – special handling of wordlists.

	
diceware.wordlist.MAX_IN_MEM_SIZE = 20971520

	Maximum in-memory file size in bytes (20 MB).

This value is used when creating temporary files replacing
unseekable input streams. If an input file is larger, we write to
disk.

	
diceware.wordlist.RE_NUMBERED_WORDLIST_ENTRY = <_sre.SRE_Pattern object>

	A regular expression matching numbered entries in wordlists.

	
diceware.wordlist.RE_VALID_WORDLIST_FILENAME = <_sre.SRE_Pattern object>

	A regular expression describing valid wordlist file names.

	
diceware.wordlist.RE_WORDLIST_NAME = <_sre.SRE_Pattern object>

	A regular expression matching allowed wordlist names. We
allow names that cannot easily mess up filesystems.

	
diceware.wordlist.WORDLISTS_DIR = '/home/docs/checkouts/readthedocs.org/user_builds/diceware/envs/v0.7.1/local/lib/python2.7/site-packages/diceware-0.7.1-py2.7.egg/diceware/wordlists'

	The directory in which wordlists are stored

	
class diceware.wordlist.WordList(path_or_filelike=None)[source]

	A word list contains words for building passphrases.

path_or_filelike is the path of the wordlist file or an already
opened file. Opened files must be open for reading, of course. We
expect filelike objects to support at least read().

If a file-like object does not support seek() (like sys.stdin),
we create a temporary, seekable copy of the input stream. The copy
is written to disk only, if it is larger than
MAX_IN_MEM_SIZE. Otherwise the wordlist is kept in memory.

Please note that open file descriptors are not closed after reading.

Wordlist files are expected to contain words, one word per
line. Empty lines are ignored, also whitespaces before or trailing
a line are stripped. If a “word” contains inner whitespaces, then
these are preserved.

The input file can be a signed wordlist. Signed wordlists are
expected to be ordinary lists of words but with ASCII armored
signatures (as described in RFC 4880).

In case of signed wordlists the signature headers/footers are
stripped and the contained list of words is read.

WordList are generators. That means, that you can retrieve the
words of a wordlist by iterating over an instance of WordList.

	
is_signed()[source]

	check, whether this file is cryptographically signed.

This operation is expensive and resets the file descriptor to
the beginning of file.

	
refine_entry(entry)[source]

	Apply modifications to form a proper wordlist entry.

Refining means: strip() entry remove escape-dashes (if this is
a signed wordlist) and extract the term if it is preceded by
numbers.

	
diceware.wordlist.get_wordlist_names()[source]

	Get a all names of wordlists stored locally.

	
diceware.wordlist.get_wordlist_path(name)[source]

	Get path to a wordlist file for a wordlist named name.

The name string must not contain special chars beside -,
_, regular chars A-Z (upper or lower case) or
numbers. Invalid names raise a ValueError.

If a path with the given name (names are not filenames here) does
not exist, None is returned.

diceware.random_sources

Sources of randomness.

Please register all sources as entry point in setup.py. Look out for
“SystemRandomSource” for an example.

For developers of interfaces to other sources of randomness: Currently,
you can extend diceware random sources by registering a class, that
provides a suitable __init__(self, options) and a choice(self,
sequence) method.

The __init__ method of your class will be called with options, a set
of options as parsed from the commandline. The initialization code can
use the options to determine further actions or ignore it. The
__init__ method is also the right place to ask users for one-time
infos you need. This includes infos like the number of sides of a dice,
an API key for random.org or other infos that should not change between
generating different words (but might change from one diceware call
to the next).

The choice method then, will get a sequence of chars, strings, or
numbers and should pick one of them based on the source of randomness
intended to be utilized by your code. If further user interaction is
required, choice might also ask users for input or similar. Typically,
choice is called once for each word and once for each special char to
generate.

Finally, to register the source, add some stanza in setup.py of your
project that looks like:

...
setup(
 # ...
 entry_points={
 # console scripts and other entry points...
 'diceware_random_sources': [
 'myrandom = mypkg.mymodule:MyRandomSource',
 'myothersrc = mypkg.mymodule:MyOtherSource',
],
 },
 # ...
)
...

Here the myrandom and myothersrc lines register random sources that
(if installed) diceware will find on startup and offer to users under
the name given. In the described case, users could do for instance:

diceware -r myrandom

and the random source defined in the given class would be used for
generating a passphrase.

	
class diceware.random_sources.RealDiceRandomSource(options)[source]

	A source of randomness working with real dice.

	
choice(sequence)[source]

	Pick one item out of sequence.

	
pre_check(num_rolls, sequence)[source]

	Checks performed before picking an item of a sequence.

We make sure that num_rolls, the number of rolls, is in an
acceptable range and issue an hint about the procedure.

	
class diceware.random_sources.SystemRandomSource(options)[source]

	A Random Source utilizing the standard Python SystemRandom call.

As time of writing, SystemRandom makes use of /dev/urandom to get
fairly useable random numbers.

This source is registered as entry_point in setup.py under the name
‘system’ in the diceware_random_sources group.

The constructor will be called with options at beginning of a
programme run if the user has chosen the respective source of
random.

The SystemRandomSource is the default source.

	
choice(sequence)[source]

	Pick one item out of sequence.

The sequence will normally be a sequence of strings
(wordlist), special chars, or numbers.

Sequences can be (at least) lists, tuples and other types that
have a len. Generators do not have to be supported (and are
in fact not supported by this source).

This method should return one item of the sequence picked based on
the underlying source of randomness.

In the long run, the choice should return each sequence item
(i.e.: no items should be ‘unreachable’).

It should also cope with any length > 0 of sequence and not
break if a sequence is “too short” or “too long”. Empty
sequences, however, might raise exceptions.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	diceware 0.7.1 documentation

Changes

0.7.1 (2016-04-21)

	Fixed #19. @dwcoder revealed and fixed a nasty bug in the real-dice
randomness-source. Thanks a lot!

0.7 (2016-04-17)

	Added sample .diceware.ini.

	Added new english wordlist en_securedrop. This is the new
default list. Thanks to heartsucker [https://github.com/heartsucker] who compiled and added the list.

	Remove support for Python 3.2. Several packages we depend on for testing
and sandboxing stopped Python 3.2 support. We follow them.

0.6.1 (2015-12-15)

	Minor doc changes: add separate config file docs.

	Fix docs: the default wordlist is named en. Some docs were not
up-to-date in that regard.

0.6 (2015-12-15)

	Officially support Pyhthon 3.5.

	Tests do not depend on pytest-cov, pytest-xdist anymore.

	Support configuration files. You can set different defaults in a
file called .diceware.ini in your home directory.

	Renamed wordlist en_8k to en as it serves as the default
for english passphrases.

0.5 (2015-08-05)

	New option -r, --randomsource. We support a pluggable system
to define alternative sources of randomness. Currently supported
sources: "system" (to retrieve randomness from standard library,
default) and realdice, which allows use of real dice.

	New option -w, --wordlist. We now provide several wordlists
for users to choose from. Own wordlists could already be fed to
diceware before. By default we still use the 8192 words list from
http://diceware.com.

	Rename SRC_DIR to WORDLISTS_DIR (reflecting what it stands for).

	Use also flake8 with tox.

	Pass options to get_passphrase() instead of a bunch of single args.

	Output wordlists dir in help output.

0.4 (2015-03-30)

	Add –delimiter option (thanks to Rodolfo Gouveia).

0.3.1 (2015-03-29)

	Turned former diceware module into a Python package. This is to
fix bug #1 Wordlists aren’t included during installation [https://github.com/ulif/diceware/issues/1], this time really.
Wordlists will from now on be stored inside the diceware package.
Again many thanks to conorsch [https://github.com/conorsch] who
digged deep into the matter and also came up with a very considerable
solution.

	Use readthedocs theme in docs.

0.3 (2015-03-28)

	Fix bug #1 Wordlists aren’t included during installation [https://github.com/ulif/diceware/issues/1] . Thanks to conorsch [https://github.com/conorsch]

	Add –version option.

0.2 (2015-03-27)

	Minor documentation changes.

	Updated copyright infos.

	Add support for custom wordlists.

0.1 (2015-02-18)

	Initial release.

_heartsucker: `

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	diceware 0.7.1 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 diceware	

 	
 	
 diceware.config	

 	
 	
 diceware.random_sources	

 	
 	
 diceware.wordlist	

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	diceware 0.7.1 documentation

Index

 C
 | D
 | G
 | H
 | I
 | M
 | P
 | R
 | S
 | V
 | W

C

 	

 	choice() (diceware.random_sources.RealDiceRandomSource method)

 	

 	(diceware.random_sources.SystemRandomSource method)

D

 	

 	diceware (module)

 	diceware.config (module)

 	

 	diceware.random_sources (module)

 	diceware.wordlist (module)

G

 	

 	get_config_dict() (in module diceware.config)

 	get_configparser() (in module diceware.config)

 	get_passphrase() (in module diceware)

 	

 	get_random_sources() (in module diceware)

 	get_wordlist_names() (in module diceware.wordlist)

 	get_wordlist_path() (in module diceware.wordlist)

H

 	

 	handle_options() (in module diceware)

I

 	

 	insert_special_char() (in module diceware)

 	

 	is_signed() (diceware.wordlist.WordList method)

M

 	

 	main() (in module diceware)

 	

 	MAX_IN_MEM_SIZE (in module diceware.wordlist)

P

 	

 	pre_check() (diceware.random_sources.RealDiceRandomSource method)

 	

 	print_version() (in module diceware)

R

 	

 	RE_NUMBERED_WORDLIST_ENTRY (in module diceware.wordlist)

 	RE_VALID_WORDLIST_FILENAME (in module diceware.wordlist)

 	RE_WORDLIST_NAME (in module diceware.wordlist)

 	

 	RealDiceRandomSource (class in diceware.random_sources)

 	refine_entry() (diceware.wordlist.WordList method)

S

 	

 	SPECIAL_CHARS (in module diceware)

 	

 	SystemRandomSource (class in diceware.random_sources)

V

 	

 	valid_locations() (in module diceware.config)

W

 	

 	WordList (class in diceware.wordlist)

 	

 	WORDLISTS_DIR (in module diceware.wordlist)

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_modules/diceware.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.7.1 documentation »

 		Module code »

 Source code for diceware

diceware -- passphrases to remember
Copyright (C) 2015, 2016 Uli Fouquet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""diceware -- rememberable passphrases
"""
import argparse
import pkg_resources
import sys
from random import SystemRandom
from diceware.config import get_config_dict
from diceware.wordlist import (
 WordList, get_wordlist_path, WORDLISTS_DIR, get_wordlist_names,
)

__version__ = pkg_resources.get_distribution('diceware').version

#: Special chars inserted on demand
SPECIAL_CHARS = r"~!#$%^&*()-=+[]\{}:;" + r'"' + r"'<>?/0123456789"

GPL_TEXT = (
 """
 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.
 """
)

[docs]def print_version():
 """Output current version and other infos.
 """
 print("diceware %s" % __version__)
 print("Copyright (C) 2015, 2016 Uli Fouquet")
 print("diceware is based on suggestions of Arnold G. Reinhold.")
 print("See http://diceware.com for details.")

 print("'Diceware' is a trademark of Arnold G. Reinhold.")
 print(GPL_TEXT)

[docs]def get_random_sources():
 """Get a dictionary of all entry points called diceware_random_source.

 Returns a dictionary with names mapped to callables registered as
 `entry_point`s for the ``diceware_randomsource`` group.

 Callables should accept `options` when called and return something
 that provides a `choice(sequence)` method that works like the
 respective method in the standard Python lib `random` module.
 """
 result = dict()
 for entry_point in pkg_resources.iter_entry_points(
 group="diceware_random_sources"):
 result.update({entry_point.name: entry_point.load()})
 return result

[docs]def handle_options(args):
 """Handle commandline options.
 """
 random_sources = get_random_sources().keys()
 wordlist_names = get_wordlist_names()
 defaults = get_config_dict()
 parser = argparse.ArgumentParser(
 description="Create a passphrase",
 epilog="Wordlists are stored in %s" % WORDLISTS_DIR
)
 parser.add_argument(
 '-n', '--num', default=6, type=int,
 help='number of words to concatenate. Default: 6')
 cap_group = parser.add_mutually_exclusive_group()
 cap_group.add_argument(
 '-c', '--caps', action='store_true',
 help='Capitalize words. This is the default.')
 cap_group.add_argument(
 '--no-caps', action='store_false', dest='capitalize',
 help='Turn off capitalization.')
 parser.add_argument(
 '-s', '--specials', default=0, type=int, metavar='NUM',
 help="Insert NUM special chars into generated word.")
 parser.add_argument(
 '-d', '--delimiter', default='',
 help="Separate words by DELIMITER. Empty string by default.")
 parser.add_argument(
 '-r', '--randomsource', default='system', choices=random_sources,
 metavar="SOURCE",
 help=(
 "Get randomness from this source. Possible values: `%s'. "
 "Default: system" % "', `".join(sorted(random_sources))))
 parser.add_argument(
 '-w', '--wordlist', default='en_securedrop', choices=wordlist_names,
 metavar="NAME",
 help=(
 "Use words from this wordlist. Possible values: `%s'. "
 "Wordlists are stored in the folder displayed below. "
 "Default: en_securedrop" % "', `".join(wordlist_names)))
 parser.add_argument(
 'infile', nargs='?', metavar='INFILE', default=None,
 type=argparse.FileType('r'),
 help="Input wordlist. `-' will read from stdin.",
)
 parser.add_argument(
 '--version', action='store_true',
 help='output version information and exit.',
)
 parser.set_defaults(**defaults)
 args = parser.parse_args(args)
 return args

[docs]def insert_special_char(word, specials=SPECIAL_CHARS, rnd=None):
 """Insert a char out of `specials` into `word`.

 `rnd`, if passed in, will be used as a (pseudo) random number
 generator. We use `.choice()` only.

 Returns the modified word.
 """
 if rnd is None:
 rnd = SystemRandom()
 char_list = list(word)
 char_list[rnd.choice(range(len(char_list)))] = rnd.choice(specials)
 return ''.join(char_list)

[docs]def get_passphrase(options=None):
 """Get a diceware passphrase.

 `options` is a set of arguments as provided by
 `argparse.OptionParser.parse_args()`.

 The passphrase returned will contain `options.num` words deliimted by
 `options.delimiter` and `options.specials` special chars.

 For the passphrase generation we will use the random source
 registered under the name `options.randomsource` (something like
 "system" or "dice").

 If `options.capitalize` is ``True``, all words will be capitalized.

 If `options.infile`, a file descriptor, is given, it will be used
 instead of a 'built-in' wordlist. `options.infile` must be open for
 reading.
 """
 if options is None:
 options = handle_options(args=[])
 if options.infile is None:
 options.infile = open(get_wordlist_path(options.wordlist), 'r')
 word_list = WordList(options.infile)
 rnd_source = get_random_sources()[options.randomsource]
 rnd = rnd_source(options)
 words = [rnd.choice(list(word_list)) for x in range(options.num)]
 if options.capitalize:
 words = [x.capitalize() for x in words]
 result = options.delimiter.join(words)
 for _ in range(options.specials):
 result = insert_special_char(result, rnd=rnd)
 return result

[docs]def main(args=None):
 """Main programme.

 Called when `diceware` script is called.

 `args` is a list of command line arguments to process. If no such
 args are given, we use `sys.argv`.
 """
 if args is None:
 args = sys.argv[1:]
 options = handle_options(args)
 if options.version:
 print_version()
 raise SystemExit(0)
 print(get_passphrase(options))

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.7.1 documentation »

 All modules for which code is available

		diceware

		diceware.config

		diceware.random_sources

		diceware.wordlist

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

_modules/diceware/wordlist.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.7.1 documentation »

 		Module code »

 		diceware »

 Source code for diceware.wordlist

diceware -- passphrases to remember
Copyright (C) 2015, 2016 Uli Fouquet and contributors.
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""wordlist.py -- special handling of wordlists.
"""
import os
import re
import tempfile

#: Maximum in-memory file size in bytes (20 MB).
#:
#: This value is used when creating temporary files replacing
#: unseekable input streams. If an input file is larger, we write to
#: disk.
MAX_IN_MEM_SIZE = 20 * 1024 * 1024

#: The directory in which wordlists are stored
WORDLISTS_DIR = os.path.abspath(
 os.path.join(os.path.dirname(__file__), 'wordlists'))

#: A regular expression matching allowed wordlist names. We
#: allow names that cannot easily mess up filesystems.
RE_WORDLIST_NAME = re.compile('^[\w-]+$')

#: A regular expression matching numbered entries in wordlists.
RE_NUMBERED_WORDLIST_ENTRY = re.compile('^[0-9]+\s+([^\s]+)$')

#: A regular expression describing valid wordlist file names.
RE_VALID_WORDLIST_FILENAME = re.compile(
 '^wordlist_([\w-]+)\.[\w][\w\.]+[\w]+$')

[docs]def get_wordlist_names():
 """Get a all names of wordlists stored locally.
 """
 result = []
 filenames = os.listdir(WORDLISTS_DIR)
 for filename in filenames:
 if not os.path.isfile(os.path.join(WORDLISTS_DIR, filename)):
 continue
 match = RE_VALID_WORDLIST_FILENAME.match(filename)
 if not match:
 continue
 result.append(match.groups()[0])
 return sorted(result)

[docs]def get_wordlist_path(name):
 """Get path to a wordlist file for a wordlist named `name`.

 The `name` string must not contain special chars beside ``-``,
 ``_``, regular chars ``A-Z`` (upper or lower case) or
 numbers. Invalid names raise a ValueError.

 If a path with the given name (names are not filenames here) does
 not exist, `None` is returned.
 """
 if not RE_WORDLIST_NAME.match(name):
 raise ValueError("Not a valid wordlist name: %s" % name)
 for filename in os.listdir(WORDLISTS_DIR):
 if not os.path.isfile(os.path.join(WORDLISTS_DIR, filename)):
 continue
 match = RE_VALID_WORDLIST_FILENAME.match(filename)
 if match and match.groups()[0] == name:
 return os.path.join(WORDLISTS_DIR, filename)

[docs]class WordList(object):
 """A word list contains words for building passphrases.

 `path_or_filelike` is the path of the wordlist file or an already
 opened file. Opened files must be open for reading, of course. We
 expect filelike objects to support at least `read()`.

 If a file-like object does not support `seek()` (like `sys.stdin`),
 we create a temporary, seekable copy of the input stream. The copy
 is written to disk only, if it is larger than
 `MAX_IN_MEM_SIZE`. Otherwise the wordlist is kept in memory.

 Please note that open file descriptors are not closed after reading.

 Wordlist files are expected to contain words, one word per
 line. Empty lines are ignored, also whitespaces before or trailing
 a line are stripped. If a "word" contains inner whitespaces, then
 these are preserved.

 The input file can be a signed wordlist. Signed wordlists are
 expected to be ordinary lists of words but with ASCII armored
 signatures (as described in RFC 4880).

 In case of signed wordlists the signature headers/footers are
 stripped and the contained list of words is read.

 WordList are generators. That means, that you can retrieve the
 words of a wordlist by iterating over an instance of `WordList`.

 """
 def __init__(self, path_or_filelike=None):
 self.path = None
 if not hasattr(path_or_filelike, 'read'):
 # got a path, not a filelike object
 self.path = path_or_filelike
 self.fd = open(self.path, "r")
 else:
 self.fd = path_or_filelike
 try:
 self.fd.seek(0)
 except IOError:
 # the given filelike does not support seek(). Create an own.
 self.fd = tempfile.SpooledTemporaryFile(
 max_size=MAX_IN_MEM_SIZE, mode="w+")
 self.fd.write(path_or_filelike.read())
 self.fd.seek(0)
 self.signed = self.is_signed()

 def __iter__(self):
 self.fd.seek(0)
 if self.signed:
 while self.fd.readline().strip():
 # wait for first empty line
 pass
 for line in self.fd:
 line = self.refine_entry(line)
 if not line:
 continue
 elif self.signed and line == '-----BEGIN PGP SIGNATURE-----':
 break
 yield line

[docs] def is_signed(self):
 """check, whether this file is cryptographically signed.

 This operation is expensive and resets the file descriptor to
 the beginning of file.
 """
 self.fd.seek(0)
 line1 = self.fd.readline()
 self.fd.seek(0)
 if line1.rstrip() == "-----BEGIN PGP SIGNED MESSAGE-----":
 return True
 return False

[docs] def refine_entry(self, entry):
 """Apply modifications to form a proper wordlist entry.

 Refining means: strip() `entry` remove escape-dashes (if this is
 a signed wordlist) and extract the term if it is preceded by
 numbers.
 """
 if self.signed and entry.startswith('- '):
 entry = entry[2:]
 entry = entry.strip()
 match = RE_NUMBERED_WORDLIST_ENTRY.match(entry)
 if match:
 entry = match.groups()[0]
 return entry

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_modules/diceware/config.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.7.1 documentation »

 		Module code »

 		diceware »

 Source code for diceware.config

diceware -- passphrases to remember
Copyright (C) 2015, 2016 Uli Fouquet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""config -- diceware configuration

`diceware` is configurable via commandline, configuration files and
direct API calls.

"""
try:
 import configparser # Python 3.x
except ImportError: # pragma: no cover
 import ConfigParser as configparser # Python 2.x
import os

OPTIONS_DEFAULTS = dict(
 num=6,
 caps=True,
 specials=0,
 delimiter="",
 randomsource="system",
 wordlist="en_securedrop",
)

[docs]def valid_locations():
 """The list of valid paths we look up for config files.
 """
 user_home = os.path.expanduser("~")
 result = []
 if user_home != "~":
 result = [os.path.join(user_home, ".diceware.ini"),]
 return result

[docs]def get_configparser(path_list=None):
 """Parse `path_list` for config values.

 If no list is given we use `valid_locations()`.

 Return a list of paths read and a config parser instance.
 """
 if path_list is None:
 path_list = valid_locations()
 parser = configparser.SafeConfigParser()
 found = parser.read(path_list)
 return found, parser

[docs]def get_config_dict(path_list=None):
 """Get config values found in files from `path_list`.

 Read files in `path_list` config files and return option valus as
 regular dictonary.

 We only accept values for which a default exists in
 `OPTIONS_DEFAULTS`.

 Values are interpolated to have same value type as same-named values
 from `OPTIONS_DEFAULTS` if they are integers or boolean.
 """
 result = dict(OPTIONS_DEFAULTS)
 found, parser = get_configparser(path_list)
 for key, val in OPTIONS_DEFAULTS.items():
 if not parser.has_option('diceware', key):
 continue
 if isinstance(val, bool):
 result[key] = parser.getboolean("diceware", key)
 elif isinstance(val, int):
 result[key] = parser.getint("diceware", key)
 else:
 result[key] = parser.get("diceware", key)
 return result

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_modules/diceware/random_sources.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.7.1 documentation »

 		Module code »

 		diceware »

 Source code for diceware.random_sources

diceware -- passphrases to remember
Copyright (C) 2015, 2016 Uli Fouquet and contributors.
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""Sources of randomness.

Please register all sources as entry point in ``setup.py``. Look out for
"SystemRandomSource" for an example.

For developers of interfaces to other sources of randomness: Currently,
you can extend `diceware` random sources by registering a class, that
provides a suitable `__init__(self, options)` and a `choice(self,
sequence)` method.

The `__init__` method of your class will be called with `options`, a set
of options as parsed from the commandline. The initialization code can
use the options to determine further actions or ignore it. The
`__init__` method is also the right place to ask users for one-time
infos you need. This includes infos like the number of sides of a dice,
an API key for random.org or other infos that should not change between
generating different words (but might change from one `diceware` call
to the next).

The `choice` method then, will get a sequence of chars, strings, or
numbers and should pick one of them based on the source of randomness
intended to be utilized by your code. If further user interaction is
required, `choice` might also ask users for input or similar. Typically,
`choice` is called once for each word and once for each special char to
generate.

Finally, to register the source, add some stanza in `setup.py` of your
project that looks like::

 # ...
 setup(
 # ...
 entry_points={
 # console scripts and other entry points...
 'diceware_random_sources': [
 'myrandom = mypkg.mymodule:MyRandomSource',
 'myothersrc = mypkg.mymodule:MyOtherSource',
],
 },
 # ...
)
 # ...

Here the `myrandom` and `myothersrc` lines register random sources that
(if installed) `diceware` will find on startup and offer to users under
the name given. In the described case, users could do for instance::

 diceware -r myrandom

and the random source defined in the given class would be used for
generating a passphrase.

"""
import math
import sys
from random import SystemRandom

input_func = input
if sys.version[0] < "3":
 input_func = raw_input # NOQA # pragma: no cover

[docs]class SystemRandomSource(object):
 """A Random Source utilizing the standard Python `SystemRandom` call.

 As time of writing, SystemRandom makes use of ``/dev/urandom`` to get
 fairly useable random numbers.

 This source is registered as entry_point in setup.py under the name
 'system' in the ``diceware_random_sources`` group.

 The constructor will be called with options at beginning of a
 programme run if the user has chosen the respective source of
 random.

 The SystemRandomSource is the default source.
 """
 def __init__(self, options):
 self.options = options
 self.rnd = SystemRandom()

[docs] def choice(self, sequence):
 """Pick one item out of `sequence`.

 The `sequence` will normally be a sequence of strings
 (wordlist), special chars, or numbers.

 Sequences can be (at least) lists, tuples and other types that
 have a `len`. Generators do not have to be supported (and are
 in fact not supported by this source).

 This method should return one item of the `sequence` picked based on
 the underlying source of randomness.

 In the long run, the choice should return each `sequence` item
 (i.e.: no items should be 'unreachable').

 It should also cope with any length > 0 of `sequence` and not
 break if a sequence is "too short" or "too long". Empty
 sequences, however, might raise exceptions.
 """
 return self.rnd.choice(sequence)

[docs]class RealDiceRandomSource(object):
 """A source of randomness working with real dice.
 """
 def __init__(self, options):
 self.options = options
 self.dice_sides = 6

[docs] def pre_check(self, num_rolls, sequence):
 """Checks performed before picking an item of a sequence.

 We make sure that `num_rolls`, the number of rolls, is in an
 acceptable range and issue an hint about the procedure.
 """
 if num_rolls == 0:
 raise(ValueError)
 if (self.dice_sides ** num_rolls) < len(sequence):
 print(
 "Warning: entropy is reduced! Using only first %s of %s "
 "words/items of your wordlist." % (
 self.dice_sides ** num_rolls, len(sequence)
)
)
 print(
 "Please roll %s dice (or a single dice %s times)." % (
 num_rolls, num_rolls))
 return

[docs] def choice(self, sequence):
 """Pick one item out of `sequence`.
 """
 num_rolls = int(math.log(len(sequence), self.dice_sides))
 use_modulo = False
 if num_rolls < 1:
 # If this happens, there are less values in the sequence to
 # choose from than there are dice sides.
 # First check whehter the length is 1. Then we don't have
 # to do anything else
 if len(sequence) == 1:
 # Check whether len(sequence) is a factor of dice.sides
 return sequence[0]
 if self.dice_sides % len(sequence) == 0:
 use_modulo = True
 num_rolls = 1
 else:
 # otherwise We will perform one extra roll and apply modulo
 use_modulo = True
 num_rolls = 2
 self.pre_check(num_rolls, sequence)
 result = 0
 for i in range(num_rolls, 0, -1):
 rolled = None
 while rolled not in [
 str(x) for x in range(1, self.dice_sides + 1)]:
 rolled = input_func(
 "What number shows dice number %s? " % (num_rolls - i + 1))
 result += ((self.dice_sides ** (i - 1)) * (int(rolled) - 1))
 if use_modulo:
 result = result % len(sequence)
 return sequence[result]

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

