

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	diceware 0.9.1 documentation

Welcome to diceware documentation

Version: 0.9.1

[image: Build Status] [https://travis-ci.org/ulif/diceware]

	diceware
	Install

	Usage

	What is it good for?

	Is it secure?

	Security Traps

	Developer Install

	Credits

	Links

	License

	Sources of Randomness
	System Random

	Real Dice

	Bring Your Own Source (for developers)

	Configuration Files
	Option Names

	Config File Name and Path

	Option Values

	Wordlists
	Add Own Wordlists

	Plain Wordlists

	Numbered Wordlists

	PGP-signed Wordlists

	API
	diceware main module

	diceware.logger

	diceware.config

	diceware.wordlist

	diceware.random_sources

	Changes
	0.9.1 (2016-12-24)

	0.9 (2016-09-14)

	0.8 (2016-05-07)

	0.7.1 (2016-04-21)

	0.7 (2016-04-17)

	0.6.1 (2015-12-15)

	0.6 (2015-12-15)

	0.5 (2015-08-05)

	0.4 (2015-03-30)

	0.3.1 (2015-03-29)

	0.3 (2015-03-28)

	0.2 (2015-03-27)

	0.1 (2015-02-18)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.9.1 documentation

diceware

Passphrases to remember...

[image: Build Status] [https://travis-ci.org/ulif/diceware] | documentation [https://diceware.readthedocs.io/] | sources [https://github.com/ulif/diceware] | issues [https://github.com/ulif/diceware/issues]

diceware is a passphrase generator following the proposals of
Arnold G. Reinhold on http://diceware.com . It generates passphrases
by concatenating words randomly picked from wordlists. For instance:

$ diceware
MyraPend93rdSixthEagleAid

The passphrase contains by default six words (with first char
capitalized) without any separator chars. Optionally you can let
diceware insert special chars into the passphrase.

diceware supports several sources of randomness (including real life
dice) and different wordlists (including cryptographically signed
ones).

Contents

	diceware
	Install

	Usage

	What is it good for?

	Is it secure?

	Security Traps

	Developer Install
	Documentation Install

	Credits

	Links

	License

Install

This Python package can be installed via pip [https://pip.pypa.io/en/latest/]:

$ pip install diceware

The exact way depends on your operating system.

Usage

Once installed, use --help to list all available options:

$ diceware --help
Create a passphrase

positional arguments:
 INFILE Input wordlist. `-' will read from stdin.

optional arguments:
 -h, --help show this help message and exit
 -n NUM, --num NUM number of words to concatenate. Default: 6
 -c, --caps Capitalize words. This is the default.
 --no-caps Turn off capitalization.
 -s NUM, --specials NUM
 Insert NUM special chars into generated word.
 -d DELIMITER, --delimiter DELIMITER
 Separate words by DELIMITER. Empty string by default.
 -r SOURCE, --randomsource SOURCE
 Get randomness from this source. Possible values:
 `realdice', `system'. Default: system
 -w NAME, --wordlist NAME
 Use words from this wordlist. Possible values: `en',
 `en_eff', `en_orig', `en_securedrop'. Wordlists are
 stored in the folder displayed below. Default:
 en_securedrop
 -v, --verbose Be verbose. Use several times for increased verbosity.
 --version output version information and exit.

Arguments related to `realdice' randomsource:
 --dice-sides N Number of sides of dice. Default: 6

Wordlists are stored in <WORDLISTS-DIR>

With -n you can tell how many words are supposed to be picked for
your new passphrase:

$ diceware -n 1
Thud

$ diceware -n 2
KnitMargo

You can diceware additionally let generate special chars to replace
characters in the ‘normal’ passphrase. The number of special chars
generated can be determined with the -s option (default is zero):

$ diceware -s 2
Heroic%unkLon#DmLewJohns

Here "%" and "#" are the special chars.

Special chars are taken from the following list:

~!#$%^&*()-=+[]\{}:;\"'<>?/0123456789

Please note that several special chars might replace the same original
char, resulting in a passphrase with less special chars than requested.

With -d you can advise diceware to put a delimiter string
between the words generated:

$ diceware -d "_"
Wavy_Baden_400_Whelp_Quest_Macon

By default we use the empty string as delimiter, which is good for
copying via double click on Linux systems. But other delimiters might
make your passphrases more readable (and more secure, see
Security Traps below).

By default the single phrase words are capitalized, i.e. the first
char of each word is made uppercase. This does not neccessarily give
better entropy (but protects against entropy loss due to non prefix
code [https://en.wikipedia.org/wiki/Prefix_code], see Security Traps below), and it might
improve phrase readability.

You can nevertheless disable caps with the --no-caps option:

$ diceware --no-caps
oceanblendbaronferrylistenvalet

This will leave the input words untouched (upper-case stays upper-case,
lower-case stays lower-case). It does not mean, that all output words will be
lower-case (except if all words of your wordlist are lowercase).

As the default lists of diceware contain only lower-case terms, here
--no-caps means in fact lower-case only output, which might be easier to
type on smart phones and similar.

diceware supports also different sources of randomness, which can be
chosen with the -r <SOURCENAME> or --randomsource <SOURCENAME>
option. Use the --help option to list all valid values for this
option.

By default we use the random.SystemRandom [https://docs.python.org/3.4/library/random.html#random.SystemRandom] class of standard Python
lib but you can also bring your own dice to create randomness:

$ diceware -r realdice --dice-sides 6
Please roll 5 dice (or a single dice 5 times).
What number shows dice number 1? 2
What number shows dice number 2? 3
...
DogmaAnyShrikeSageSableHoar

Normally dice have six sides. And this is also the default in
diceware if you do not use --dice-sides. But if you do, you can
tell how many sides (all) your dice have. More sides will lead to less
rolls required.

We support even sources of randomness from other packages. See the
documentation [https://diceware.readthedocs.io/] for more details.

diceware comes with an English wordlist provided by Heartsucker,
which will be used by default and contains 8192 different words. This
list is based off the original diceware list written by Arnold G.
Reinhold.

Both the original and 8k diceware wordlists by Mr. Reinhold are provided.
You can enable a certain (installed) wordlist with the -w option:

$ diceware --wordlist en_orig
YorkNodePrickEchoToriNiobe

See diceware --help for a list of all installed wordlists.

If you do not like the wordlists provided, you can use your own
one. Any INFILE provided will be parsed line by line and each line
considered a possible word. For instance:

$ echo -e "hi\nhello\n" > mywordlist.txt
$ diceware mywordlist.txt
HelloHelloHiHiHiHello

With dash (-) as filename you can pipe in wordlists:

$ echo -e "hi\nhello\n" > mywordlist.txt
$ cat mywordlist.txt | diceware -
HiHiHelloHiHiHello

In custom wordlists we take each line for a valid word and ignore
empty lines (i.e. lines containing whitespace characters only). Oh,
and we handle even PGP-signed wordlists.

You can set customized default values in a configuration file
.diceware.ini (note the leading dot) placed in your home
directory. This file could look like this:

[diceware]
num = 7
caps = off
specials = 2
delimiter = "MYDELIMITER"
randomsource = "system"
wordlist = "en"

The options names have to match long argument names, as output by
--help. The values set must meet the requirements valid for
commandline usage. All options must be set within a section
[diceware].

What is it good for?

Normally, diceware passphrases are easier to remember than shorter
passwords constructed in more or less bizarre ways. But at the same
time diceware passphrases provide more entropy as xkcd [http://xkcd.com/] can show
with the famous ‘936’ proof [http://xkcd.com/936/]:

[image: http://imgs.xkcd.com/comics/password_strength.png]
 [http://xkcd.com/936/]The standard english wordlist of this diceware implementation
contains 8192 = 2**13 different english words. It is a hand-compiled
8192-words list provided by Heartsucker [https://github.com/heartsucker]. Therefore, picking a
random word from this list gives an entropy of 13 bits. Picking six
words means an entropy of 6 x 13 = 73 bits.

The special chars replacing chars of the originally created passphrase
give some more entropy (the more chars you have, the more additional
entropy), but not much. For instance, for a sixteen chars phrase you
have sixteen possibilities to place one of the 36 special chars. That
makes 36 x 16 possibilitities or an entropy of about 9.17 you can add.
To get an entropy increase of at least 10 bits, you have to put a
special char in a phrase with at least 29 chars (while at the same
time an additional word would give you 13 bits of extra
entropy). Therefore you might think again about using special chars in
your passphrase.

Is it secure?

The security level provided by Diceware [http://diceware.com/] depends heavily on your
source of random. If the delivered randomness is good, then your
passphrases will be very strong. If instead someone can foresee the
numbers generated by a random number generator, your passphrases will
be surprisingly weak.

This Python implementation uses (by default) the
random.SystemRandom [https://docs.python.org/3.4/library/random.html#random.SystemRandom] source provided by Python. On Un*x systems it
accesses /dev/urandom. You might want to follow reports about
manipulated random number generators in operating systems closely.

The Python API of this package allows usage of other sources of
randomness when generating passphrases. This includes real dice. See
the -r option.

Security Traps

There are issues that might reduce the entropy of the passphrase
generated. One of them is the prefix code [https://en.wikipedia.org/wiki/Prefix_code] problem:

If the wordlist contains, for example, the words:

"air", "airport", "portable", "able"

and we switched off caps and delimiter chars, then diceware might
generate a passphrase containing:

"airportable"

which could come from air-portable or airport-able. We cannot
tell and an attacker would have less combinations to guess.

To avoid that, you can leave caps enabled (the default), use any word
delimiter except the empty string or use the en_eff wordlist,
which was checked to be a prefix code [https://en.wikipedia.org/wiki/Prefix_code] (i.e. it does not contain
words that start with other words in the list).

Each of these measures is sufficient to protect you against the
prefix code [https://en.wikipedia.org/wiki/Prefix_code] problem.

Developer Install

Developers want to fork me on github [http://github.com/ulif/diceware/]:

$ git clone https://github.com/ulif/diceware.git

We recommend to create and activate a virtualenv [https://virtualenv.pypa.io/] first:

$ cd diceware/
$ virtualenv -p /usr/bin/python3.4 py34
$ source py34/bin/activate
(py34) $

We support Python versions 2.6, 2.7, 3.3, 3.4, 3.5, pypy.

Now you can create the devel environment:

(py34) $ python setup.py dev

This will fetch test packages (py.test [https://pytest.org/]). You should be able to run
tests now:

(py34) $ py.test

If you have also different Python versions installed you can use tox [https://tox.testrun.org/]
for using them all for testing:

(py34) $ pip install tox # only once
(py34) $ tox

Should run tests in all supported Python versions.

Documentation Install

The docs can be generated with Sphinx [https://sphinx-doc.org/]. The needed packages are
installed via:

(py34) $ python setup.py docs

To create HTML you have to go to the docs/ directory and use the
prepared Makefile:

(py34) $ cd docs/
(py34) $ make

This should generate the docs in docs/_build/html/.

Credits

Arnold G. Reinhold deserves all merits for the working parts of
Diceware [http://diceware.com/]. The non-working parts are certainly my fault.

People that helped spotting bugs, providing solutions, etc.:

	Conor Schaefer (conorsch) [https://github.com/conorsch]

	Rodolfo Gouveia suggested to activate the --delimiter option.

	@drebs [https://github.com/drebs] provided patches and discussion for different sources of
randomness. @drebs [https://github.com/drebs] also initiated and performed the packaging of
diceware for the Debian [https://www.debian.org/] platform. Many kudos for this work! @drebs [https://github.com/drebs]
is also the official Debian maintainer of the diceware package.

	Heartsucker [https://github.com/heartsucker] hand-compiled and
added a new english wordlist.

	dwcoder [https://github.com/dwcoder] revealed and fixed bugs
#19, #21, #23. Also showed sound knowledge of (theoretical)
entropy. A pleasure to work with.

	George V. Reilly [https://github.com/georgevreilly] pointed to new
EFF wordlists.

	lieryan [https://github.com/lieryan] brought up the prefix
code [https://en.wikipedia.org/wiki/Prefix_code] problem.

	LogosOfJ [https://github.com/LogosOfJ] discovered and fixed
serious realdice source of randomnoess problem.

Many thanks to all of them!

Links

	The Diceware [http://diceware.com/] home page. Reading definitely recommended!

	fork me on github [http://github.com/ulif/diceware/]

Wordlists:

	Diceware8k list [http://world.std.com/~reinhold/diceware8k.txt] by Arnold G. Reinhold.

	Diceware SecureDrop list [https://github.com/heartsucker/diceware] by Heartsucker.

	EFF large list [https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt] provided by EFF [https://eff.org/].

License

This Python implementation of Diceware, (C) 2015, 2016 Uli Fouquet, is
licensed under the GPL v3+.

The Copyright for the Diceware [http://diceware.com/] idea and the Diceware8k list [http://world.std.com/~reinhold/diceware8k.txt] are
Copyright by Arnold G. Reinhold. The Copyright for the the Diceware
SecureDrop list [https://github.com/heartsucker/diceware] are copyright by Heartsucker. Copyright for the EFF
large list [https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt] by Joseph Bonneau [https://www.eff.org/about/staff/joseph-bonneau] and EFF [https://eff.org/]. See file LICENSE for
details.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.9.1 documentation

Sources of Randomness

The security of your passphrase depends naturally heavily on the
source of randomness you use. If the source is good, it is really hard
to predict your passphrase. If it is bad, your passphrase might be
surprisingly easy to guess. diceware does not provide own
pseudo-random number generators or similar. Instead we let you choose
yourself the source of randomness you trust.

diceware supports different sources of randomness, which can be
chosen with the -r <SOURCENAME> or --randomsource <SOURCENAME>
option.

Use the --help option to list all valid values for the
--randomsource option.

Python-developers can provide their own source of randomness. If their
package is installed together with diceware (and their source is
registered correctly), diceware will offer their source as valid
option.

System Random

By default diceware uses the Python standard lib
random.SystemRandom [http://docs.python.org/library/random.html#random.SystemRandom] class to retrieve randomness. This class
calls an OS-specific source of randomness that returns data normally
unpredictable enough for our purposes. The quality of randomness
therefore depends on the quality of your OS implementation.

As a user you can enforce the use of this source of randomness with
the -r system option.

Please note that the Raspberry Pi is said to provide a hardware random
number generator that delivers “real randomness”. One has to enable it
system-wide to make it the active source of randomness on a Raspberry
Pi. If done properly, also randomSystemRandom (and hence
diceware) should use good quality random numbers.

Real Dice

diceware also supports real dice as source of randomness. You can
pick this source of randomness with the -r realdice option.:

$ diceware -r realdice
Warning: entropy is reduced!
Please roll 5 dice (or a single dice 5 times).
What number shows dice number 1? 1
What number shows dice number 2? 2
What number shows dice number 3? 3
What number shows dice number 4? 4
What number shows dice number 5? 5
Warning: entropy is reduced!
Please roll 5 dice (or a single dice 5 times).
What number shows dice number 1? 2
What number shows dice number 2? 3
What number shows dice number 3? 3
What number shows dice number 4? 5
What number shows dice number 5? 1

...

What number shows dice number 5? 3
AnyDogmaShrikeSageSableHoar

If you see a warning “entropy is reduced!”, this means that not the
whole range of the wordlist you use can be put to account. Instead we
use (in case of 5 rolls) the first 6^5 words only. If you use a
wordlist with 6^n elements (for instance the original list with 7776
elements of Mr. Rheinhold), you will not get this warning.

Currently we support only 6-sided dice.

Bring Your Own Source (for developers)

diceware uses Python entry-points for looking up sources of
randomness. That means you can write your own source of randomness in
Python, register it in your own package and once both, your package
and diceware are installed together on a system, your source of
randomness will be offered and used by diceware (if the user selects
it).

To build your own source of randomness you have to provide a class
with a constructor that accepts a single options object. Furthermore
a source of randomness has to provide a choice(sequence) method. It
comes down to something like that:

class MySourceOfRandomness(object):
 "Tell about your source..."
 def __init__(self, options):
 # initialize, etc.

 def choice(sequence):
 # return one of the elements in `sequence`

The choice() method will be called for each word of the passphrase
and for each special char. Please do not make assumptions about the
sequence passed to choice. It will be a list of “somethings” and be
indexable.

If your source is ready, you can register it in the setup.py of
your package like this:

setup.py

...

setup(

 ...

 entry_points={
 'diceware_random_sources': [
 'mysrc = mypkg.sources:MySourceOfRandomness',
 # add more sources of randomness here...
],
 }
)

Here we assume that you defined MySourceOfRandomness in a package
mypkg and a module called sources.

Once this package is installed, you can run diceware like this:

$ diceware -r mysrc

and your source of randomness will be used.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.9.1 documentation

Configuration Files

You can use configuration files to persistently override built-in
defaults and make your custom settings the default.

diceware configuration files follow simple .ini-style and look
like this:

[diceware]
num = 3
caps = off
specials = 2
delimiter = "MYDELIMITER"
randomsource = system
wordlist = "en"
dice_sides = 6

These settings would mean that by default phrases with three words
(instead six) would be created. Commandline options, however, override
config file settings. So, with the settings above:

$ diceware
Duma7YDELIMITER56MYDE^IMITERJock

we will get three-word phrases while with:

$ diceware --delimiter=FOO
AmuseFOO]us(FOO18th

we will override the config file setting for delimiter. Other
settings from config file are still valid.

Option Names

The options names have to match long argument names, as output with
--help. The values set must meet the requirements valid for
commandline usage.

You can use all or only some (or none) of the above options. Please
note that other entries, providing unknown option names, are
ignored. That means that also typos might lead to ignored entries.

Please note, that all options must be set within a section
[diceware].

Config File Name and Path

Currently, we look for configuration files only in the calling users’
home directory. The file must be called:

.diceware.ini

(please note the leading dot). If such a file is missing, build-in
defaults apply.

Option Values

The option values set can be strings, integers, or boolean
values.

diceware accepts yes, no, 1, 0, true, false,
on, and off as boolean values.

Some options require their setting to be taken from a fixed set of
names/values, for instance the randomsource option. You can
normally get the allowed values from calling diceware --help.

String-based options (like delimiter) accept values enclosed in
quotes to allow whitespace-only values.

If some value cannot be parsed, an exception is raised.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.9.1 documentation

Wordlists

The passphrases generated by diceware naturally depend on the set of
words used, the wordlists.

diceware comes with some wordlists out-of-the-box, that might be a
good choice for usual private use.

Warning

We do – by default – not use the diceware standard
wordlist [http://world.std.com/~reinhold/diceware.wordlist.asc] (which contains 7,776 words), because
computers prefer powers of two and we use the Python
standard lib random source by default (we do not want to
waste entropy).

But the “original” list is included in diceware as well
and you can pick it with the -w en_orig option. You
should pick it when you use real dice as source of
randomness.

Currently we provide the following lists:

	en_securedrop (8192 words, default)

By default we use a hand-crafted en_securedrop wordlist provided
by @Heartsucker [https://github.com/heartsucker/]. It contains 8,192 english words and
phrases. This list is based on the diceware standard wordlist [http://world.std.com/~reinhold/diceware.wordlist.asc] and
extended to offer better memorizable words. Please see
https://github.com/heartsucker/diceware for details. The name
en_securedrop refers to the securedrop [https://github.com/freedomofpress/securedrop] project.

	en (8192 words)

Apart from it we also provide the so-called 8k wordlist [http://world.std.com/~reinhold/diceware8k.txt] from
Mr. Reinhold as published on http://diceware.com/. It also contains
8,192 english words and phrases and is something like the canonical
wordlist for use with binary-geared entities like computers or
nerds.

	en_eff (7776 words)

This is the long EFF wordlist [https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt] as published by the Electronic
Frontier Foundation [https://eff.org/] in mid-2016. They put real scientific
effort [https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases] into the creation of this list which might considerably
ease the use of passphrases generated with it. When using real dice
(or other six-based randomness generators) use is definitely
recommended!

Please note, that this is currently the only list, that provides the
prefix property [https://en.wikipedia.org/wiki/Prefix_code]. That means it contains no word which is a prefix
of another word. Lists without this property might provide a slightly
decreased entropy.

	en_orig (7776 words)

This is the diceware standard wordlist [http://world.std.com/~reinhold/diceware.wordlist.asc] as provided by
Mr. Reinhold. Something like the canonical list in former times,
there are now considerable alternatives.

You can pick another list with the -w or --wordlist option.

Add Own Wordlists

You can use any wordlist you like. Simply give the filename and it
will be used:

$ diceware mywordlist.txt
HiHelloHelloHiHiHi

You can even pipe-in dynamic wordlists. Just use the dash - as
filename:

$ cat mywordgenerator.sh | diceware -
HiHiHelloHiHiHello

for instance.

Of course you have to give the filenames of your files with each call
to diceware.

But, if you want to store a wordlist persistently, you can do so too.

The wordlists we offer for use with diceware are all stored in a
single folder. The exact location is output by --help at the very
end:

$ diceware --help
...
Wordlists are stored in /some/path/to/folder

Just put your own wordlists into this folder (here:
/some/path/to/folder) and rename the file to something like
wordlist_MY_SPECIAL_NAME.txt. Afterwards you can pick your
wordlist by running:

$ diceware -w MY_SPECIAL_NAME

diceware will use this file of yours then to create a
passphrase. Please note that diceware only accepts files that are
named like:

wordlist_NAME.txt

or:

wordlist_OTHER_NAME.asc

I.e. we expect wordlist_ at the beginning and some filename
extension like .txt at the end. Furthermore names must not contain
funny characters. In fact we accept regular letters, dashes, numbers,
and underscores only. Files that do not follow these naming convention
are ignored.

A list of all available wordlist names can also be retrieved with
--help. See the --wordlist explanation.

Plain Wordlists

Out of the box, diceware supports plain wordlists, PGP-signed
wordlists, and numbered wordlists. Plain wordlists look like this:

termone
termtwo
anotherterm

Each line in such a file is considered a word of the wordlist. Empty
lines are ignored.

Whitespaces are allowed if they are not at the beginning or end of a
line, stripped off otherwise.

Numbered Wordlists

Numbered wordlists contain numbers in each line, telling a
sequence of dice rolls like so:

11111 aterm
11112 anotherterm
...

diceware detects such lines and in this case extracts aterm and
anotherterm as wordlist entries.

Apart from simple digits written next to each other, diceware also
accepts numbers separated by dashes like this:

1-1-1-1-1 aterm
1-1-1-1-2 anotherterm

which is handy when working with wordlists for dice with more than 9
sides.

PGP-signed Wordlists

PGP-signed wordlists are wordlists (ordinary or numbered ones), that
have been cryptographically signed with PGP or GPG. They look like
this:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

foo
bar
baz

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iJwEAQEKAAYFAlW00GEACgkQ+5ktCoLaPzSutwP8DVgdjBFqRXNKaZlvd8pR+P3k
8xx5XLC0OFwZQFx4Ls8xl3+/xfvCNxCGSZjD6BGPzNZCK7bmQQYWcrsoEyX5jAC3
dXjAPj0nct/PkJQlrUjUI2qrO0dFfU7sRj0Gn9TOlQQkKoQVwy7pY/6HaScGNepL
J8BNUPYdOWeVgxY1jSY=
=WXfu
-----END PGP SIGNATURE-----

and are normally stored with the .asc filename extension. Signed
wordlists can be verified to detect changes, although this is not
automatically done by diceware.

Warning

Diceware does not automatically verify PGP-signed
files.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diceware 0.9.1 documentation

API

diceware code is geared towards commandline usage. You can, however,
use it from Python. The API docs are here to assist you with that.

For using diceware in your own, setuptools-based Python project,
you can add it as an install requirement in setup.py of your
project:

from setuptools import setup
...
setup(
 name="myproject",
 # ...
 install_requires=[
 # packages we depend on...
 'setuptools',
 'diceware',
 # ...
],
 # ...
)

Of course there are other ways to make diceware available.

diceware main module

diceware – rememberable passphrases

	
diceware.SPECIAL_CHARS = '~!#$%^&*()-=+[]\\{}:;"\'<>?/0123456789'

	Special chars inserted on demand

	
diceware.get_passphrase(options=None)[source]

	Get a diceware passphrase.

options is a set of arguments as provided by
argparse.OptionParser.parse_args().

The passphrase returned will contain options.num words deliimted by
options.delimiter and options.specials special chars.

For the passphrase generation we will use the random source
registered under the name options.randomsource (something like
“system” or “dice”).

If options.caps is True, all words will be caps.

If options.infile, a file descriptor, is given, it will be used
instead of a ‘built-in’ wordlist. options.infile must be open for
reading.

	
diceware.get_random_sources()[source]

	Get a dictionary of all entry points called diceware_random_source.

Returns a dictionary with names mapped to callables registered as
entry_point`s for the ``diceware_randomsource` group.

Callables should accept options when called and return something
that provides a choice(sequence) method that works like the
respective method in the standard Python lib random module.

	
diceware.handle_options(args)[source]

	Handle commandline options.

	
diceware.insert_special_char(word, specials='~!#$%^&*()-=+[]\\{}:;"\'<>?/0123456789', rnd=None)[source]

	Insert a char out of specials into word.

rnd, if passed in, will be used as a (pseudo) random number
generator. We use .choice() only.

Returns the modified word.

	
diceware.main(args=None)[source]

	Main programme.

Called when diceware script is called.

args is a list of command line arguments to process. If no such
args are given, we use sys.argv.

	
diceware.print_version()[source]

	Output current version and other infos.

diceware.logger

logging – output status and other data.

The logger provided in this module is meant to be used by other
components for messages to users.

It is named “ulif.openoffice” and can, as a singleton, be retrieved by
calling standard lib logging.getLogger(“ulif.diceware”).

By default it provides a logging.NullHandler as libraries normally
do. Other components might add other handlers.

	
diceware.logger.configure(verbosity=None)[source]

	Configure global duceware logger.

verbosity sets the diceware logger verbosity. 0 enables info
mode, while all numbes > 2 enable debug mode.

	
diceware.logger.logger = <logging.Logger object>

	Logger that can be used for all diceware related messages.

diceware.config

config – diceware configuration

diceware is configurable via commandline, configuration files and
direct API calls.

	
diceware.config.get_config_dict(path_list=None, defaults_dict={'wordlist': 'en_securedrop', 'verbose': 0, 'dice_sides': 6, 'randomsource': 'system', 'caps': True, 'specials': 0, 'delimiter': '', 'num': 6}, section='diceware')[source]

	Get config values found in files from path_list.

Read files in path_list config files and return option values from
section section as regular dictonary.

We only accept values for which a default exists in
defaults_dict. If defaults_dict is None we use
OPTIONS_DEFAULTS.

Values are interpolated to have same value type as same-named values
from defaults_dict if they are integers or boolean.

String/text values are stripped from preceding/trailing quotes
(single and double).

	
diceware.config.get_configparser(path_list=None)[source]

	Parse path_list for config values.

If no list is given we use valid_locations().

Return a list of paths read and a config parser instance.

	
diceware.config.valid_locations()[source]

	The list of valid paths we look up for config files.

diceware.wordlist

wordlist.py – special handling of wordlists.

	
diceware.wordlist.MAX_IN_MEM_SIZE = 20971520

	Maximum in-memory file size in bytes (20 MB).

This value is used when creating temporary files replacing
unseekable input streams. If an input file is larger, we write to
disk.

	
diceware.wordlist.RE_NUMBERED_WORDLIST_ENTRY = <_sre.SRE_Pattern object>

	A regular expression matching numbered entries in wordlists.

	
diceware.wordlist.RE_VALID_WORDLIST_FILENAME = <_sre.SRE_Pattern object>

	A regular expression describing valid wordlist file names.

	
diceware.wordlist.RE_WORDLIST_NAME = <_sre.SRE_Pattern object>

	A regular expression matching allowed wordlist names. We
allow names that cannot easily mess up filesystems.

	
diceware.wordlist.WORDLISTS_DIR = '/home/docs/checkouts/readthedocs.org/user_builds/diceware/envs/v0.9.1/local/lib/python2.7/site-packages/diceware-0.9.1-py2.7.egg/diceware/wordlists'

	The directory in which wordlists are stored

	
class diceware.wordlist.WordList(path_or_filelike=None)[source]

	A word list contains words for building passphrases.

path_or_filelike is the path of the wordlist file or an already
opened file. Opened files must be open for reading, of course. We
expect filelike objects to support at least read().

If a file-like object does not support seek() (like sys.stdin),
we create a temporary, seekable copy of the input stream. The copy
is written to disk only, if it is larger than
MAX_IN_MEM_SIZE. Otherwise the wordlist is kept in memory.

Please note that open file descriptors are not closed after reading.

Wordlist files are expected to contain words, one word per
line. Empty lines are ignored, also whitespaces before or trailing
a line are stripped. If a “word” contains inner whitespaces, then
these are preserved.

The input file can be a signed wordlist. Signed wordlists are
expected to be ordinary lists of words but with ASCII armored
signatures (as described in RFC 4880).

In case of signed wordlists the signature headers/footers are
stripped and the contained list of words is read.

WordList are generators. That means, that you can retrieve the
words of a wordlist by iterating over an instance of WordList.

	
is_signed()[source]

	check, whether this file is cryptographically signed.

This operation is expensive and resets the file descriptor to
the beginning of file.

	
refine_entry(entry)[source]

	Apply modifications to form a proper wordlist entry.

Refining means: strip() entry remove escape-dashes (if this is
a signed wordlist) and extract the term if it is preceded by
numbers.

	
diceware.wordlist.get_wordlist_names()[source]

	Get a all names of wordlists stored locally.

	
diceware.wordlist.get_wordlist_path(name)[source]

	Get path to a wordlist file for a wordlist named name.

The name string must not contain special chars beside -,
_, regular chars A-Z (upper or lower case) or
numbers. Invalid names raise a ValueError.

If a path with the given name (names are not filenames here) does
not exist, None is returned.

diceware.random_sources

Sources of randomness.

Please register all sources as entry point in setup.py. Look out for
“SystemRandomSource” for an example.

For developers of interfaces to other sources of randomness: Currently,
you can extend diceware random sources by registering a class, that
provides a suitable __init__(self, options) and a choice(self,
sequence) method. Optionally, you can also provide a classmethod
called update_arparse that will get the possibility to update the
argparser.ArgumentParser used by diceware.

The __init__ method of your class will be called with options, a set
of options as parsed from the commandline. The initialization code can
use the options to determine further actions or ignore it. The
__init__ method is also the right place to ask users for one-time
infos you need. This includes infos like the number of sides of a dice,
an API key for random.org or other infos that should not change between
generating different words (but might change from one diceware call
to the next).

The choice method then, will get a sequence of chars, strings, or
numbers and should pick one of them based on the source of randomness
intended to be utilized by your code. If further user interaction is
required, choice might also ask users for input or similar. Typically,
choice is called once for each word and once for each special char to
generate.

If you want to manage own commandline options with your plugin, you can
implement a classmethod called update_argparser(parser) which gets
an argparse.ArgumentParser instance as argument (no pun intended).

Finally, to register the source, add some stanza in setup.py of your
project that looks like:

...
setup(
 # ...
 entry_points={
 # console scripts and other entry points...
 'diceware_random_sources': [
 'myrandom = mypkg.mymodule:MyRandomSource',
 'myothersrc = mypkg.mymodule:MyOtherSource',
],
 },
 # ...
)
...

Here the myrandom and myothersrc lines register random sources that
(if installed) diceware will find on startup and offer to users under
the name given. In the described case, users could do for instance:

diceware -r myrandom

and the random source defined in the given class would be used for
generating a passphrase.

	
class diceware.random_sources.RealDiceRandomSource(options)[source]

	A source of randomness working with real dice.

	
choice(sequence)[source]

	Pick one item out of sequence.

	
pre_check(num_rolls, sequence)[source]

	Checks performed before picking an item of a sequence.

We make sure that num_rolls, the number of rolls, is in an
acceptable range and issue an hint about the procedure.

	
class diceware.random_sources.SystemRandomSource(options)[source]

	A Random Source utilizing the standard Python SystemRandom call.

As time of writing, SystemRandom makes use of /dev/urandom to get
fairly useable random numbers.

This source is registered as entry_point in setup.py under the name
‘system’ in the diceware_random_sources group.

The constructor will be called with options at beginning of a
programme run if the user has chosen the respective source of
random.

The SystemRandomSource is the default source.

	
choice(sequence)[source]

	Pick one item out of sequence.

The sequence will normally be a sequence of strings
(wordlist), special chars, or numbers.

Sequences can be (at least) lists, tuples and other types that
have a len. Generators do not have to be supported (and are
in fact not supported by this source).

This method should return one item of the sequence picked based on
the underlying source of randomness.

In the long run, the choice should return each sequence item
(i.e.: no items should be ‘unreachable’).

It should also cope with any length > 0 of sequence and not
break if a sequence is “too short” or “too long”. Empty
sequences, however, might raise exceptions.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	diceware 0.9.1 documentation

Changes

0.9.1 (2016-12-24)

	Fixed #32, in docs tell that --no-caps option does not generate
lower-case terms.

	Fixed #31, broken realdice source of randomness. argparse related bug,
Bug was discovered and fixed by @LogosOfJ, thanks a lot!

	Fixed #29. Tell about code prefix problem in README.

0.9 (2016-09-14)

	Added –dice-sides option to tell how many sides used dices
provide.

	Changed API interface of get_config_dict() to allow more flexible
handling of config files.

	Support different verbosity levels.

	Added new wordlist en_eff. It is a 7776-terms list provided by
the Electronic Frontier Foundation. See
https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases
for details. Thanks to George V. Reilly [https://github.com/georgevreilly] for hinting!

	Fixed #27. Allow dashes in numbered wordlists. Yet, these looked
like 1234 myterm. We now also accept 1-2-3-4 myterm.

0.8 (2016-05-07)

	Closed #23. @dwcoder provided a fix that allows use of
whitespace-only values in diceware confg files if they are enclosed
in quotes.

	Fixed #21. @dwcoder revealed and fixed (again!). This time –caps
and –no-caps settings did not work properly when set in CLI or in
.diceware.ini config file.

	Shortened real-dice randomness source.

	Added logger as common interface to send messages to users.

	New dependency: sphinx_rtd_theme for generating docs. This theme
was formerly a dependency of Sphinx.

0.7.1 (2016-04-21)

	Fixed #19. @dwcoder revealed and fixed a nasty bug in the real-dice
randomness-source. Thanks a lot!

0.7 (2016-04-17)

	Added sample .diceware.ini.

	Added new english wordlist en_securedrop. This is the new
default list. Thanks to heartsucker [https://github.com/heartsucker] who compiled and added the list.

	Remove support for Python 3.2. Several packages we depend on for testing
and sandboxing stopped Python 3.2 support. We follow them.

0.6.1 (2015-12-15)

	Minor doc changes: add separate config file docs.

	Fix docs: the default wordlist is named en. Some docs were not
up-to-date in that regard.

0.6 (2015-12-15)

	Officially support Pyhthon 3.5.

	Tests do not depend on pytest-cov, pytest-xdist anymore.

	Support configuration files. You can set different defaults in a
file called .diceware.ini in your home directory.

	Renamed wordlist en_8k to en as it serves as the default
for english passphrases.

0.5 (2015-08-05)

	New option -r, --randomsource. We support a pluggable system
to define alternative sources of randomness. Currently supported
sources: "system" (to retrieve randomness from standard library,
default) and realdice, which allows use of real dice.

	New option -w, --wordlist. We now provide several wordlists
for users to choose from. Own wordlists could already be fed to
diceware before. By default we still use the 8192 words list from
http://diceware.com.

	Rename SRC_DIR to WORDLISTS_DIR (reflecting what it stands for).

	Use also flake8 with tox.

	Pass options to get_passphrase() instead of a bunch of single args.

	Output wordlists dir in help output.

0.4 (2015-03-30)

	Add –delimiter option (thanks to Rodolfo Gouveia).

0.3.1 (2015-03-29)

	Turned former diceware module into a Python package. This is to
fix bug #1 Wordlists aren’t included during installation [https://github.com/ulif/diceware/issues/1], this time really.
Wordlists will from now on be stored inside the diceware package.
Again many thanks to conorsch [https://github.com/conorsch] who
digged deep into the matter and also came up with a very considerable
solution.

	Use readthedocs theme in docs.

0.3 (2015-03-28)

	Fix bug #1 Wordlists aren’t included during installation [https://github.com/ulif/diceware/issues/1] . Thanks to conorsch [https://github.com/conorsch]

	Add –version option.

0.2 (2015-03-27)

	Minor documentation changes.

	Updated copyright infos.

	Add support for custom wordlists.

0.1 (2015-02-18)

	Initial release.

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	diceware 0.9.1 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 diceware	

 	
 	
 diceware.config	

 	
 	
 diceware.logger	

 	
 	
 diceware.random_sources	

 	
 	
 diceware.wordlist	

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	diceware 0.9.1 documentation

Index

 C
 | D
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | V
 | W

C

 	

 	choice() (diceware.random_sources.RealDiceRandomSource method)

 	

 	(diceware.random_sources.SystemRandomSource method)

 	

 	configure() (in module diceware.logger)

D

 	

 	diceware (module)

 	diceware.config (module)

 	diceware.logger (module)

 	

 	diceware.random_sources (module)

 	diceware.wordlist (module)

G

 	

 	get_config_dict() (in module diceware.config)

 	get_configparser() (in module diceware.config)

 	get_passphrase() (in module diceware)

 	

 	get_random_sources() (in module diceware)

 	get_wordlist_names() (in module diceware.wordlist)

 	get_wordlist_path() (in module diceware.wordlist)

H

 	

 	handle_options() (in module diceware)

I

 	

 	insert_special_char() (in module diceware)

 	

 	is_signed() (diceware.wordlist.WordList method)

L

 	

 	logger (in module diceware.logger)

M

 	

 	main() (in module diceware)

 	

 	MAX_IN_MEM_SIZE (in module diceware.wordlist)

P

 	

 	pre_check() (diceware.random_sources.RealDiceRandomSource method)

 	

 	print_version() (in module diceware)

R

 	

 	RE_NUMBERED_WORDLIST_ENTRY (in module diceware.wordlist)

 	RE_VALID_WORDLIST_FILENAME (in module diceware.wordlist)

 	RE_WORDLIST_NAME (in module diceware.wordlist)

 	

 	RealDiceRandomSource (class in diceware.random_sources)

 	refine_entry() (diceware.wordlist.WordList method)

S

 	

 	SPECIAL_CHARS (in module diceware)

 	

 	SystemRandomSource (class in diceware.random_sources)

V

 	

 	valid_locations() (in module diceware.config)

W

 	

 	WordList (class in diceware.wordlist)

 	

 	WORDLISTS_DIR (in module diceware.wordlist)

 Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_modules/logging.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.9.1 documentation »

 		Module code »

 Source code for logging

Copyright 2001-2012 by Vinay Sajip. All Rights Reserved.
#
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Vinay Sajip
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

"""
Logging package for Python. Based on PEP 282 and comments thereto in
comp.lang.python.

Copyright (C) 2001-2012 Vinay Sajip. All Rights Reserved.

To use, simply 'import logging' and log away!
"""

import sys, os, time, cStringIO, traceback, warnings, weakref

__all__ = ['BASIC_FORMAT', 'BufferingFormatter', 'CRITICAL', 'DEBUG', 'ERROR',
 'FATAL', 'FileHandler', 'Filter', 'Formatter', 'Handler', 'INFO',
 'LogRecord', 'Logger', 'LoggerAdapter', 'NOTSET', 'NullHandler',
 'StreamHandler', 'WARN', 'WARNING', 'addLevelName', 'basicConfig',
 'captureWarnings', 'critical', 'debug', 'disable', 'error',
 'exception', 'fatal', 'getLevelName', 'getLogger', 'getLoggerClass',
 'info', 'log', 'makeLogRecord', 'setLoggerClass', 'warn', 'warning']

try:
 import codecs
except ImportError:
 codecs = None

try:
 import thread
 import threading
except ImportError:
 thread = None

__author__ = "Vinay Sajip <vinay_sajip@red-dove.com>"
__status__ = "production"
__version__ = "0.5.1.2"
__date__ = "07 February 2010"

#---
Miscellaneous module data
#---
try:
 unicode
 _unicode = True
except NameError:
 _unicode = False

#
_srcfile is used when walking the stack to check when we've got the first
caller stack frame.
#
if hasattr(sys, 'frozen'): #support for py2exe
 _srcfile = "logging%s__init__%s" % (os.sep, __file__[-4:])
elif __file__[-4:].lower() in ['.pyc', '.pyo']:
 _srcfile = __file__[:-4] + '.py'
else:
 _srcfile = __file__
_srcfile = os.path.normcase(_srcfile)

next bit filched from 1.5.2's inspect.py
def currentframe():
 """Return the frame object for the caller's stack frame."""
 try:
 raise Exception
 except:
 return sys.exc_info()[2].tb_frame.f_back

if hasattr(sys, '_getframe'): currentframe = lambda: sys._getframe(3)
done filching

_srcfile is only used in conjunction with sys._getframe().
To provide compatibility with older versions of Python, set _srcfile
to None if _getframe() is not available; this value will prevent
findCaller() from being called.
#if not hasattr(sys, "_getframe"):
_srcfile = None

#
#_startTime is used as the base when calculating the relative time of events
#
_startTime = time.time()

#
#raiseExceptions is used to see if exceptions during handling should be
#propagated
#
raiseExceptions = 1

#
If you don't want threading information in the log, set this to zero
#
logThreads = 1

#
If you don't want multiprocessing information in the log, set this to zero
#
logMultiprocessing = 1

#
If you don't want process information in the log, set this to zero
#
logProcesses = 1

#---
Level related stuff
#---
#
Default levels and level names, these can be replaced with any positive set
of values having corresponding names. There is a pseudo-level, NOTSET, which
is only really there as a lower limit for user-defined levels. Handlers and
loggers are initialized with NOTSET so that they will log all messages, even
at user-defined levels.
#

CRITICAL = 50
FATAL = CRITICAL
ERROR = 40
WARNING = 30
WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0

_levelNames = {
 CRITICAL : 'CRITICAL',
 ERROR : 'ERROR',
 WARNING : 'WARNING',
 INFO : 'INFO',
 DEBUG : 'DEBUG',
 NOTSET : 'NOTSET',
 'CRITICAL' : CRITICAL,
 'ERROR' : ERROR,
 'WARN' : WARNING,
 'WARNING' : WARNING,
 'INFO' : INFO,
 'DEBUG' : DEBUG,
 'NOTSET' : NOTSET,
}

def getLevelName(level):
 """
 Return the textual representation of logging level 'level'.

 If the level is one of the predefined levels (CRITICAL, ERROR, WARNING,
 INFO, DEBUG) then you get the corresponding string. If you have
 associated levels with names using addLevelName then the name you have
 associated with 'level' is returned.

 If a numeric value corresponding to one of the defined levels is passed
 in, the corresponding string representation is returned.

 Otherwise, the string "Level %s" % level is returned.
 """
 return _levelNames.get(level, ("Level %s" % level))

def addLevelName(level, levelName):
 """
 Associate 'levelName' with 'level'.

 This is used when converting levels to text during message formatting.
 """
 _acquireLock()
 try: #unlikely to cause an exception, but you never know...
 _levelNames[level] = levelName
 _levelNames[levelName] = level
 finally:
 _releaseLock()

def _checkLevel(level):
 if isinstance(level, (int, long)):
 rv = level
 elif str(level) == level:
 if level not in _levelNames:
 raise ValueError("Unknown level: %r" % level)
 rv = _levelNames[level]
 else:
 raise TypeError("Level not an integer or a valid string: %r" % level)
 return rv

#---
Thread-related stuff
#---

#
#_lock is used to serialize access to shared data structures in this module.
#This needs to be an RLock because fileConfig() creates and configures
#Handlers, and so might arbitrary user threads. Since Handler code updates the
#shared dictionary _handlers, it needs to acquire the lock. But if configuring,
#the lock would already have been acquired - so we need an RLock.
#The same argument applies to Loggers and Manager.loggerDict.
#
if thread:
 _lock = threading.RLock()
else:
 _lock = None

def _acquireLock():
 """
 Acquire the module-level lock for serializing access to shared data.

 This should be released with _releaseLock().
 """
 if _lock:
 _lock.acquire()

def _releaseLock():
 """
 Release the module-level lock acquired by calling _acquireLock().
 """
 if _lock:
 _lock.release()

#---
The logging record
#---

class LogRecord(object):
 """
 A LogRecord instance represents an event being logged.

 LogRecord instances are created every time something is logged. They
 contain all the information pertinent to the event being logged. The
 main information passed in is in msg and args, which are combined
 using str(msg) % args to create the message field of the record. The
 record also includes information such as when the record was created,
 the source line where the logging call was made, and any exception
 information to be logged.
 """
 def __init__(self, name, level, pathname, lineno,
 msg, args, exc_info, func=None):
 """
 Initialize a logging record with interesting information.
 """
 ct = time.time()
 self.name = name
 self.msg = msg
 #
 # The following statement allows passing of a dictionary as a sole
 # argument, so that you can do something like
 # logging.debug("a %(a)d b %(b)s", {'a':1, 'b':2})
 # Suggested by Stefan Behnel.
 # Note that without the test for args[0], we get a problem because
 # during formatting, we test to see if the arg is present using
 # 'if self.args:'. If the event being logged is e.g. 'Value is %d'
 # and if the passed arg fails 'if self.args:' then no formatting
 # is done. For example, logger.warn('Value is %d', 0) would log
 # 'Value is %d' instead of 'Value is 0'.
 # For the use case of passing a dictionary, this should not be a
 # problem.
 if args and len(args) == 1 and isinstance(args[0], dict) and args[0]:
 args = args[0]
 self.args = args
 self.levelname = getLevelName(level)
 self.levelno = level
 self.pathname = pathname
 try:
 self.filename = os.path.basename(pathname)
 self.module = os.path.splitext(self.filename)[0]
 except (TypeError, ValueError, AttributeError):
 self.filename = pathname
 self.module = "Unknown module"
 self.exc_info = exc_info
 self.exc_text = None # used to cache the traceback text
 self.lineno = lineno
 self.funcName = func
 self.created = ct
 self.msecs = (ct - long(ct)) * 1000
 self.relativeCreated = (self.created - _startTime) * 1000
 if logThreads and thread:
 self.thread = thread.get_ident()
 self.threadName = threading.current_thread().name
 else:
 self.thread = None
 self.threadName = None
 if not logMultiprocessing:
 self.processName = None
 else:
 self.processName = 'MainProcess'
 mp = sys.modules.get('multiprocessing')
 if mp is not None:
 # Errors may occur if multiprocessing has not finished loading
 # yet - e.g. if a custom import hook causes third-party code
 # to run when multiprocessing calls import. See issue 8200
 # for an example
 try:
 self.processName = mp.current_process().name
 except StandardError:
 pass
 if logProcesses and hasattr(os, 'getpid'):
 self.process = os.getpid()
 else:
 self.process = None

 def __str__(self):
 return '<LogRecord: %s, %s, %s, %s, "%s">'%(self.name, self.levelno,
 self.pathname, self.lineno, self.msg)

 def getMessage(self):
 """
 Return the message for this LogRecord.

 Return the message for this LogRecord after merging any user-supplied
 arguments with the message.
 """
 if not _unicode: #if no unicode support...
 msg = str(self.msg)
 else:
 msg = self.msg
 if not isinstance(msg, basestring):
 try:
 msg = str(self.msg)
 except UnicodeError:
 msg = self.msg #Defer encoding till later
 if self.args:
 msg = msg % self.args
 return msg

def makeLogRecord(dict):
 """
 Make a LogRecord whose attributes are defined by the specified dictionary,
 This function is useful for converting a logging event received over
 a socket connection (which is sent as a dictionary) into a LogRecord
 instance.
 """
 rv = LogRecord(None, None, "", 0, "", (), None, None)
 rv.__dict__.update(dict)
 return rv

#---
Formatter classes and functions
#---

class Formatter(object):
 """
 Formatter instances are used to convert a LogRecord to text.

 Formatters need to know how a LogRecord is constructed. They are
 responsible for converting a LogRecord to (usually) a string which can
 be interpreted by either a human or an external system. The base Formatter
 allows a formatting string to be specified. If none is supplied, the
 default value of "%s(message)\\n" is used.

 The Formatter can be initialized with a format string which makes use of
 knowledge of the LogRecord attributes - e.g. the default value mentioned
 above makes use of the fact that the user's message and arguments are pre-
 formatted into a LogRecord's message attribute. Currently, the useful
 attributes in a LogRecord are described by:

 %(name)s Name of the logger (logging channel)
 %(levelno)s Numeric logging level for the message (DEBUG, INFO,
 WARNING, ERROR, CRITICAL)
 %(levelname)s Text logging level for the message ("DEBUG", "INFO",
 "WARNING", "ERROR", "CRITICAL")
 %(pathname)s Full pathname of the source file where the logging
 call was issued (if available)
 %(filename)s Filename portion of pathname
 %(module)s Module (name portion of filename)
 %(lineno)d Source line number where the logging call was issued
 (if available)
 %(funcName)s Function name
 %(created)f Time when the LogRecord was created (time.time()
 return value)
 %(asctime)s Textual time when the LogRecord was created
 %(msecs)d Millisecond portion of the creation time
 %(relativeCreated)d Time in milliseconds when the LogRecord was created,
 relative to the time the logging module was loaded
 (typically at application startup time)
 %(thread)d Thread ID (if available)
 %(threadName)s Thread name (if available)
 %(process)d Process ID (if available)
 %(message)s The result of record.getMessage(), computed just as
 the record is emitted
 """

 converter = time.localtime

 def __init__(self, fmt=None, datefmt=None):
 """
 Initialize the formatter with specified format strings.

 Initialize the formatter either with the specified format string, or a
 default as described above. Allow for specialized date formatting with
 the optional datefmt argument (if omitted, you get the ISO8601 format).
 """
 if fmt:
 self._fmt = fmt
 else:
 self._fmt = "%(message)s"
 self.datefmt = datefmt

 def formatTime(self, record, datefmt=None):
 """
 Return the creation time of the specified LogRecord as formatted text.

 This method should be called from format() by a formatter which
 wants to make use of a formatted time. This method can be overridden
 in formatters to provide for any specific requirement, but the
 basic behaviour is as follows: if datefmt (a string) is specified,
 it is used with time.strftime() to format the creation time of the
 record. Otherwise, the ISO8601 format is used. The resulting
 string is returned. This function uses a user-configurable function
 to convert the creation time to a tuple. By default, time.localtime()
 is used; to change this for a particular formatter instance, set the
 'converter' attribute to a function with the same signature as
 time.localtime() or time.gmtime(). To change it for all formatters,
 for example if you want all logging times to be shown in GMT,
 set the 'converter' attribute in the Formatter class.
 """
 ct = self.converter(record.created)
 if datefmt:
 s = time.strftime(datefmt, ct)
 else:
 t = time.strftime("%Y-%m-%d %H:%M:%S", ct)
 s = "%s,%03d" % (t, record.msecs)
 return s

 def formatException(self, ei):
 """
 Format and return the specified exception information as a string.

 This default implementation just uses
 traceback.print_exception()
 """
 sio = cStringIO.StringIO()
 traceback.print_exception(ei[0], ei[1], ei[2], None, sio)
 s = sio.getvalue()
 sio.close()
 if s[-1:] == "\n":
 s = s[:-1]
 return s

 def usesTime(self):
 """
 Check if the format uses the creation time of the record.
 """
 return self._fmt.find("%(asctime)") >= 0

 def format(self, record):
 """
 Format the specified record as text.

 The record's attribute dictionary is used as the operand to a
 string formatting operation which yields the returned string.
 Before formatting the dictionary, a couple of preparatory steps
 are carried out. The message attribute of the record is computed
 using LogRecord.getMessage(). If the formatting string uses the
 time (as determined by a call to usesTime(), formatTime() is
 called to format the event time. If there is exception information,
 it is formatted using formatException() and appended to the message.
 """
 record.message = record.getMessage()
 if self.usesTime():
 record.asctime = self.formatTime(record, self.datefmt)
 s = self._fmt % record.__dict__
 if record.exc_info:
 # Cache the traceback text to avoid converting it multiple times
 # (it's constant anyway)
 if not record.exc_text:
 record.exc_text = self.formatException(record.exc_info)
 if record.exc_text:
 if s[-1:] != "\n":
 s = s + "\n"
 try:
 s = s + record.exc_text
 except UnicodeError:
 # Sometimes filenames have non-ASCII chars, which can lead
 # to errors when s is Unicode and record.exc_text is str
 # See issue 8924.
 # We also use replace for when there are multiple
 # encodings, e.g. UTF-8 for the filesystem and latin-1
 # for a script. See issue 13232.
 s = s + record.exc_text.decode(sys.getfilesystemencoding(),
 'replace')
 return s

#
The default formatter to use when no other is specified
#
_defaultFormatter = Formatter()

class BufferingFormatter(object):
 """
 A formatter suitable for formatting a number of records.
 """
 def __init__(self, linefmt=None):
 """
 Optionally specify a formatter which will be used to format each
 individual record.
 """
 if linefmt:
 self.linefmt = linefmt
 else:
 self.linefmt = _defaultFormatter

 def formatHeader(self, records):
 """
 Return the header string for the specified records.
 """
 return ""

 def formatFooter(self, records):
 """
 Return the footer string for the specified records.
 """
 return ""

 def format(self, records):
 """
 Format the specified records and return the result as a string.
 """
 rv = ""
 if len(records) > 0:
 rv = rv + self.formatHeader(records)
 for record in records:
 rv = rv + self.linefmt.format(record)
 rv = rv + self.formatFooter(records)
 return rv

#---
Filter classes and functions
#---

class Filter(object):
 """
 Filter instances are used to perform arbitrary filtering of LogRecords.

 Loggers and Handlers can optionally use Filter instances to filter
 records as desired. The base filter class only allows events which are
 below a certain point in the logger hierarchy. For example, a filter
 initialized with "A.B" will allow events logged by loggers "A.B",
 "A.B.C", "A.B.C.D", "A.B.D" etc. but not "A.BB", "B.A.B" etc. If
 initialized with the empty string, all events are passed.
 """
 def __init__(self, name=''):
 """
 Initialize a filter.

 Initialize with the name of the logger which, together with its
 children, will have its events allowed through the filter. If no
 name is specified, allow every event.
 """
 self.name = name
 self.nlen = len(name)

 def filter(self, record):
 """
 Determine if the specified record is to be logged.

 Is the specified record to be logged? Returns 0 for no, nonzero for
 yes. If deemed appropriate, the record may be modified in-place.
 """
 if self.nlen == 0:
 return 1
 elif self.name == record.name:
 return 1
 elif record.name.find(self.name, 0, self.nlen) != 0:
 return 0
 return (record.name[self.nlen] == ".")

class Filterer(object):
 """
 A base class for loggers and handlers which allows them to share
 common code.
 """
 def __init__(self):
 """
 Initialize the list of filters to be an empty list.
 """
 self.filters = []

 def addFilter(self, filter):
 """
 Add the specified filter to this handler.
 """
 if not (filter in self.filters):
 self.filters.append(filter)

 def removeFilter(self, filter):
 """
 Remove the specified filter from this handler.
 """
 if filter in self.filters:
 self.filters.remove(filter)

 def filter(self, record):
 """
 Determine if a record is loggable by consulting all the filters.

 The default is to allow the record to be logged; any filter can veto
 this and the record is then dropped. Returns a zero value if a record
 is to be dropped, else non-zero.
 """
 rv = 1
 for f in self.filters:
 if not f.filter(record):
 rv = 0
 break
 return rv

#---
Handler classes and functions
#---

_handlers = weakref.WeakValueDictionary() #map of handler names to handlers
_handlerList = [] # added to allow handlers to be removed in reverse of order initialized

def _removeHandlerRef(wr):
 """
 Remove a handler reference from the internal cleanup list.
 """
 # This function can be called during module teardown, when globals are
 # set to None. If _acquireLock is None, assume this is the case and do
 # nothing.
 if (_acquireLock is not None and _handlerList is not None and
 _releaseLock is not None):
 _acquireLock()
 try:
 if wr in _handlerList:
 _handlerList.remove(wr)
 finally:
 _releaseLock()

def _addHandlerRef(handler):
 """
 Add a handler to the internal cleanup list using a weak reference.
 """
 _acquireLock()
 try:
 _handlerList.append(weakref.ref(handler, _removeHandlerRef))
 finally:
 _releaseLock()

class Handler(Filterer):
 """
 Handler instances dispatch logging events to specific destinations.

 The base handler class. Acts as a placeholder which defines the Handler
 interface. Handlers can optionally use Formatter instances to format
 records as desired. By default, no formatter is specified; in this case,
 the 'raw' message as determined by record.message is logged.
 """
 def __init__(self, level=NOTSET):
 """
 Initializes the instance - basically setting the formatter to None
 and the filter list to empty.
 """
 Filterer.__init__(self)
 self._name = None
 self.level = _checkLevel(level)
 self.formatter = None
 # Add the handler to the global _handlerList (for cleanup on shutdown)
 _addHandlerRef(self)
 self.createLock()

 def get_name(self):
 return self._name

 def set_name(self, name):
 _acquireLock()
 try:
 if self._name in _handlers:
 del _handlers[self._name]
 self._name = name
 if name:
 _handlers[name] = self
 finally:
 _releaseLock()

 name = property(get_name, set_name)

 def createLock(self):
 """
 Acquire a thread lock for serializing access to the underlying I/O.
 """
 if thread:
 self.lock = threading.RLock()
 else:
 self.lock = None

 def acquire(self):
 """
 Acquire the I/O thread lock.
 """
 if self.lock:
 self.lock.acquire()

 def release(self):
 """
 Release the I/O thread lock.
 """
 if self.lock:
 self.lock.release()

 def setLevel(self, level):
 """
 Set the logging level of this handler.
 """
 self.level = _checkLevel(level)

 def format(self, record):
 """
 Format the specified record.

 If a formatter is set, use it. Otherwise, use the default formatter
 for the module.
 """
 if self.formatter:
 fmt = self.formatter
 else:
 fmt = _defaultFormatter
 return fmt.format(record)

 def emit(self, record):
 """
 Do whatever it takes to actually log the specified logging record.

 This version is intended to be implemented by subclasses and so
 raises a NotImplementedError.
 """
 raise NotImplementedError('emit must be implemented '
 'by Handler subclasses')

 def handle(self, record):
 """
 Conditionally emit the specified logging record.

 Emission depends on filters which may have been added to the handler.
 Wrap the actual emission of the record with acquisition/release of
 the I/O thread lock. Returns whether the filter passed the record for
 emission.
 """
 rv = self.filter(record)
 if rv:
 self.acquire()
 try:
 self.emit(record)
 finally:
 self.release()
 return rv

 def setFormatter(self, fmt):
 """
 Set the formatter for this handler.
 """
 self.formatter = fmt

 def flush(self):
 """
 Ensure all logging output has been flushed.

 This version does nothing and is intended to be implemented by
 subclasses.
 """
 pass

 def close(self):
 """
 Tidy up any resources used by the handler.

 This version removes the handler from an internal map of handlers,
 _handlers, which is used for handler lookup by name. Subclasses
 should ensure that this gets called from overridden close()
 methods.
 """
 #get the module data lock, as we're updating a shared structure.
 _acquireLock()
 try: #unlikely to raise an exception, but you never know...
 if self._name and self._name in _handlers:
 del _handlers[self._name]
 finally:
 _releaseLock()

 def handleError(self, record):
 """
 Handle errors which occur during an emit() call.

 This method should be called from handlers when an exception is
 encountered during an emit() call. If raiseExceptions is false,
 exceptions get silently ignored. This is what is mostly wanted
 for a logging system - most users will not care about errors in
 the logging system, they are more interested in application errors.
 You could, however, replace this with a custom handler if you wish.
 The record which was being processed is passed in to this method.
 """
 if raiseExceptions and sys.stderr: # see issue 13807
 ei = sys.exc_info()
 try:
 traceback.print_exception(ei[0], ei[1], ei[2],
 None, sys.stderr)
 sys.stderr.write('Logged from file %s, line %s\n' % (
 record.filename, record.lineno))
 except IOError:
 pass # see issue 5971
 finally:
 del ei

class StreamHandler(Handler):
 """
 A handler class which writes logging records, appropriately formatted,
 to a stream. Note that this class does not close the stream, as
 sys.stdout or sys.stderr may be used.
 """

 def __init__(self, stream=None):
 """
 Initialize the handler.

 If stream is not specified, sys.stderr is used.
 """
 Handler.__init__(self)
 if stream is None:
 stream = sys.stderr
 self.stream = stream

 def flush(self):
 """
 Flushes the stream.
 """
 self.acquire()
 try:
 if self.stream and hasattr(self.stream, "flush"):
 self.stream.flush()
 finally:
 self.release()

 def emit(self, record):
 """
 Emit a record.

 If a formatter is specified, it is used to format the record.
 The record is then written to the stream with a trailing newline. If
 exception information is present, it is formatted using
 traceback.print_exception and appended to the stream. If the stream
 has an 'encoding' attribute, it is used to determine how to do the
 output to the stream.
 """
 try:
 msg = self.format(record)
 stream = self.stream
 fs = "%s\n"
 if not _unicode: #if no unicode support...
 stream.write(fs % msg)
 else:
 try:
 if (isinstance(msg, unicode) and
 getattr(stream, 'encoding', None)):
 ufs = u'%s\n'
 try:
 stream.write(ufs % msg)
 except UnicodeEncodeError:
 #Printing to terminals sometimes fails. For example,
 #with an encoding of 'cp1251', the above write will
 #work if written to a stream opened or wrapped by
 #the codecs module, but fail when writing to a
 #terminal even when the codepage is set to cp1251.
 #An extra encoding step seems to be needed.
 stream.write((ufs % msg).encode(stream.encoding))
 else:
 stream.write(fs % msg)
 except UnicodeError:
 stream.write(fs % msg.encode("UTF-8"))
 self.flush()
 except (KeyboardInterrupt, SystemExit):
 raise
 except:
 self.handleError(record)

class FileHandler(StreamHandler):
 """
 A handler class which writes formatted logging records to disk files.
 """
 def __init__(self, filename, mode='a', encoding=None, delay=0):
 """
 Open the specified file and use it as the stream for logging.
 """
 #keep the absolute path, otherwise derived classes which use this
 #may come a cropper when the current directory changes
 if codecs is None:
 encoding = None
 self.baseFilename = os.path.abspath(filename)
 self.mode = mode
 self.encoding = encoding
 self.delay = delay
 if delay:
 #We don't open the stream, but we still need to call the
 #Handler constructor to set level, formatter, lock etc.
 Handler.__init__(self)
 self.stream = None
 else:
 StreamHandler.__init__(self, self._open())

 def close(self):
 """
 Closes the stream.
 """
 self.acquire()
 try:
 if self.stream:
 self.flush()
 if hasattr(self.stream, "close"):
 self.stream.close()
 self.stream = None
 # Issue #19523: call unconditionally to
 # prevent a handler leak when delay is set
 StreamHandler.close(self)
 finally:
 self.release()

 def _open(self):
 """
 Open the current base file with the (original) mode and encoding.
 Return the resulting stream.
 """
 if self.encoding is None:
 stream = open(self.baseFilename, self.mode)
 else:
 stream = codecs.open(self.baseFilename, self.mode, self.encoding)
 return stream

 def emit(self, record):
 """
 Emit a record.

 If the stream was not opened because 'delay' was specified in the
 constructor, open it before calling the superclass's emit.
 """
 if self.stream is None:
 self.stream = self._open()
 StreamHandler.emit(self, record)

#---
Manager classes and functions
#---

class PlaceHolder(object):
 """
 PlaceHolder instances are used in the Manager logger hierarchy to take
 the place of nodes for which no loggers have been defined. This class is
 intended for internal use only and not as part of the public API.
 """
 def __init__(self, alogger):
 """
 Initialize with the specified logger being a child of this placeholder.
 """
 #self.loggers = [alogger]
 self.loggerMap = { alogger : None }

 def append(self, alogger):
 """
 Add the specified logger as a child of this placeholder.
 """
 #if alogger not in self.loggers:
 if alogger not in self.loggerMap:
 #self.loggers.append(alogger)
 self.loggerMap[alogger] = None

#
Determine which class to use when instantiating loggers.
#
_loggerClass = None

def setLoggerClass(klass):
 """
 Set the class to be used when instantiating a logger. The class should
 define __init__() such that only a name argument is required, and the
 __init__() should call Logger.__init__()
 """
 if klass != Logger:
 if not issubclass(klass, Logger):
 raise TypeError("logger not derived from logging.Logger: "
 + klass.__name__)
 global _loggerClass
 _loggerClass = klass

def getLoggerClass():
 """
 Return the class to be used when instantiating a logger.
 """

 return _loggerClass

class Manager(object):
 """
 There is [under normal circumstances] just one Manager instance, which
 holds the hierarchy of loggers.
 """
 def __init__(self, rootnode):
 """
 Initialize the manager with the root node of the logger hierarchy.
 """
 self.root = rootnode
 self.disable = 0
 self.emittedNoHandlerWarning = 0
 self.loggerDict = {}
 self.loggerClass = None

 def getLogger(self, name):
 """
 Get a logger with the specified name (channel name), creating it
 if it doesn't yet exist. This name is a dot-separated hierarchical
 name, such as "a", "a.b", "a.b.c" or similar.

 If a PlaceHolder existed for the specified name [i.e. the logger
 didn't exist but a child of it did], replace it with the created
 logger and fix up the parent/child references which pointed to the
 placeholder to now point to the logger.
 """
 rv = None
 if not isinstance(name, basestring):
 raise TypeError('A logger name must be string or Unicode')
 if isinstance(name, unicode):
 name = name.encode('utf-8')
 _acquireLock()
 try:
 if name in self.loggerDict:
 rv = self.loggerDict[name]
 if isinstance(rv, PlaceHolder):
 ph = rv
 rv = (self.loggerClass or _loggerClass)(name)
 rv.manager = self
 self.loggerDict[name] = rv
 self._fixupChildren(ph, rv)
 self._fixupParents(rv)
 else:
 rv = (self.loggerClass or _loggerClass)(name)
 rv.manager = self
 self.loggerDict[name] = rv
 self._fixupParents(rv)
 finally:
 _releaseLock()
 return rv

 def setLoggerClass(self, klass):
 """
 Set the class to be used when instantiating a logger with this Manager.
 """
 if klass != Logger:
 if not issubclass(klass, Logger):
 raise TypeError("logger not derived from logging.Logger: "
 + klass.__name__)
 self.loggerClass = klass

 def _fixupParents(self, alogger):
 """
 Ensure that there are either loggers or placeholders all the way
 from the specified logger to the root of the logger hierarchy.
 """
 name = alogger.name
 i = name.rfind(".")
 rv = None
 while (i > 0) and not rv:
 substr = name[:i]
 if substr not in self.loggerDict:
 self.loggerDict[substr] = PlaceHolder(alogger)
 else:
 obj = self.loggerDict[substr]
 if isinstance(obj, Logger):
 rv = obj
 else:
 assert isinstance(obj, PlaceHolder)
 obj.append(alogger)
 i = name.rfind(".", 0, i - 1)
 if not rv:
 rv = self.root
 alogger.parent = rv

 def _fixupChildren(self, ph, alogger):
 """
 Ensure that children of the placeholder ph are connected to the
 specified logger.
 """
 name = alogger.name
 namelen = len(name)
 for c in ph.loggerMap.keys():
 #The if means ... if not c.parent.name.startswith(nm)
 if c.parent.name[:namelen] != name:
 alogger.parent = c.parent
 c.parent = alogger

#---
Logger classes and functions
#---

class Logger(Filterer):
 """
 Instances of the Logger class represent a single logging channel. A
 "logging channel" indicates an area of an application. Exactly how an
 "area" is defined is up to the application developer. Since an
 application can have any number of areas, logging channels are identified
 by a unique string. Application areas can be nested (e.g. an area
 of "input processing" might include sub-areas "read CSV files", "read
 XLS files" and "read Gnumeric files"). To cater for this natural nesting,
 channel names are organized into a namespace hierarchy where levels are
 separated by periods, much like the Java or Python package namespace. So
 in the instance given above, channel names might be "input" for the upper
 level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
 There is no arbitrary limit to the depth of nesting.
 """
 def __init__(self, name, level=NOTSET):
 """
 Initialize the logger with a name and an optional level.
 """
 Filterer.__init__(self)
 self.name = name
 self.level = _checkLevel(level)
 self.parent = None
 self.propagate = 1
 self.handlers = []
 self.disabled = 0

 def setLevel(self, level):
 """
 Set the logging level of this logger.
 """
 self.level = _checkLevel(level)

 def debug(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'DEBUG'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)
 """
 if self.isEnabledFor(DEBUG):
 self._log(DEBUG, msg, args, **kwargs)

 def info(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'INFO'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.info("Houston, we have a %s", "interesting problem", exc_info=1)
 """
 if self.isEnabledFor(INFO):
 self._log(INFO, msg, args, **kwargs)

 def warning(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'WARNING'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)
 """
 if self.isEnabledFor(WARNING):
 self._log(WARNING, msg, args, **kwargs)

 warn = warning

 def error(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'ERROR'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.error("Houston, we have a %s", "major problem", exc_info=1)
 """
 if self.isEnabledFor(ERROR):
 self._log(ERROR, msg, args, **kwargs)

 def exception(self, msg, *args, **kwargs):
 """
 Convenience method for logging an ERROR with exception information.
 """
 kwargs['exc_info'] = 1
 self.error(msg, *args, **kwargs)

 def critical(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'CRITICAL'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.critical("Houston, we have a %s", "major disaster", exc_info=1)
 """
 if self.isEnabledFor(CRITICAL):
 self._log(CRITICAL, msg, args, **kwargs)

 fatal = critical

 def log(self, level, msg, *args, **kwargs):
 """
 Log 'msg % args' with the integer severity 'level'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.log(level, "We have a %s", "mysterious problem", exc_info=1)
 """
 if not isinstance(level, int):
 if raiseExceptions:
 raise TypeError("level must be an integer")
 else:
 return
 if self.isEnabledFor(level):
 self._log(level, msg, args, **kwargs)

 def findCaller(self):
 """
 Find the stack frame of the caller so that we can note the source
 file name, line number and function name.
 """
 f = currentframe()
 #On some versions of IronPython, currentframe() returns None if
 #IronPython isn't run with -X:Frames.
 if f is not None:
 f = f.f_back
 rv = "(unknown file)", 0, "(unknown function)"
 while hasattr(f, "f_code"):
 co = f.f_code
 filename = os.path.normcase(co.co_filename)
 if filename == _srcfile:
 f = f.f_back
 continue
 rv = (co.co_filename, f.f_lineno, co.co_name)
 break
 return rv

 def makeRecord(self, name, level, fn, lno, msg, args, exc_info, func=None, extra=None):
 """
 A factory method which can be overridden in subclasses to create
 specialized LogRecords.
 """
 rv = LogRecord(name, level, fn, lno, msg, args, exc_info, func)
 if extra is not None:
 for key in extra:
 if (key in ["message", "asctime"]) or (key in rv.__dict__):
 raise KeyError("Attempt to overwrite %r in LogRecord" % key)
 rv.__dict__[key] = extra[key]
 return rv

 def _log(self, level, msg, args, exc_info=None, extra=None):
 """
 Low-level logging routine which creates a LogRecord and then calls
 all the handlers of this logger to handle the record.
 """
 if _srcfile:
 #IronPython doesn't track Python frames, so findCaller raises an
 #exception on some versions of IronPython. We trap it here so that
 #IronPython can use logging.
 try:
 fn, lno, func = self.findCaller()
 except ValueError:
 fn, lno, func = "(unknown file)", 0, "(unknown function)"
 else:
 fn, lno, func = "(unknown file)", 0, "(unknown function)"
 if exc_info:
 if not isinstance(exc_info, tuple):
 exc_info = sys.exc_info()
 record = self.makeRecord(self.name, level, fn, lno, msg, args, exc_info, func, extra)
 self.handle(record)

 def handle(self, record):
 """
 Call the handlers for the specified record.

 This method is used for unpickled records received from a socket, as
 well as those created locally. Logger-level filtering is applied.
 """
 if (not self.disabled) and self.filter(record):
 self.callHandlers(record)

 def addHandler(self, hdlr):
 """
 Add the specified handler to this logger.
 """
 _acquireLock()
 try:
 if not (hdlr in self.handlers):
 self.handlers.append(hdlr)
 finally:
 _releaseLock()

 def removeHandler(self, hdlr):
 """
 Remove the specified handler from this logger.
 """
 _acquireLock()
 try:
 if hdlr in self.handlers:
 self.handlers.remove(hdlr)
 finally:
 _releaseLock()

 def callHandlers(self, record):
 """
 Pass a record to all relevant handlers.

 Loop through all handlers for this logger and its parents in the
 logger hierarchy. If no handler was found, output a one-off error
 message to sys.stderr. Stop searching up the hierarchy whenever a
 logger with the "propagate" attribute set to zero is found - that
 will be the last logger whose handlers are called.
 """
 c = self
 found = 0
 while c:
 for hdlr in c.handlers:
 found = found + 1
 if record.levelno >= hdlr.level:
 hdlr.handle(record)
 if not c.propagate:
 c = None #break out
 else:
 c = c.parent
 if (found == 0) and raiseExceptions and not self.manager.emittedNoHandlerWarning:
 sys.stderr.write("No handlers could be found for logger"
 " \"%s\"\n" % self.name)
 self.manager.emittedNoHandlerWarning = 1

 def getEffectiveLevel(self):
 """
 Get the effective level for this logger.

 Loop through this logger and its parents in the logger hierarchy,
 looking for a non-zero logging level. Return the first one found.
 """
 logger = self
 while logger:
 if logger.level:
 return logger.level
 logger = logger.parent
 return NOTSET

 def isEnabledFor(self, level):
 """
 Is this logger enabled for level 'level'?
 """
 if self.manager.disable >= level:
 return 0
 return level >= self.getEffectiveLevel()

 def getChild(self, suffix):
 """
 Get a logger which is a descendant to this one.

 This is a convenience method, such that

 logging.getLogger('abc').getChild('def.ghi')

 is the same as

 logging.getLogger('abc.def.ghi')

 It's useful, for example, when the parent logger is named using
 __name__ rather than a literal string.
 """
 if self.root is not self:
 suffix = '.'.join((self.name, suffix))
 return self.manager.getLogger(suffix)

class RootLogger(Logger):
 """
 A root logger is not that different to any other logger, except that
 it must have a logging level and there is only one instance of it in
 the hierarchy.
 """
 def __init__(self, level):
 """
 Initialize the logger with the name "root".
 """
 Logger.__init__(self, "root", level)

_loggerClass = Logger

class LoggerAdapter(object):
 """
 An adapter for loggers which makes it easier to specify contextual
 information in logging output.
 """

 def __init__(self, logger, extra):
 """
 Initialize the adapter with a logger and a dict-like object which
 provides contextual information. This constructor signature allows
 easy stacking of LoggerAdapters, if so desired.

 You can effectively pass keyword arguments as shown in the
 following example:

 adapter = LoggerAdapter(someLogger, dict(p1=v1, p2="v2"))
 """
 self.logger = logger
 self.extra = extra

 def process(self, msg, kwargs):
 """
 Process the logging message and keyword arguments passed in to
 a logging call to insert contextual information. You can either
 manipulate the message itself, the keyword args or both. Return
 the message and kwargs modified (or not) to suit your needs.

 Normally, you'll only need to override this one method in a
 LoggerAdapter subclass for your specific needs.
 """
 kwargs["extra"] = self.extra
 return msg, kwargs

 def debug(self, msg, *args, **kwargs):
 """
 Delegate a debug call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.debug(msg, *args, **kwargs)

 def info(self, msg, *args, **kwargs):
 """
 Delegate an info call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.info(msg, *args, **kwargs)

 def warning(self, msg, *args, **kwargs):
 """
 Delegate a warning call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.warning(msg, *args, **kwargs)

 def error(self, msg, *args, **kwargs):
 """
 Delegate an error call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.error(msg, *args, **kwargs)

 def exception(self, msg, *args, **kwargs):
 """
 Delegate an exception call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 kwargs["exc_info"] = 1
 self.logger.error(msg, *args, **kwargs)

 def critical(self, msg, *args, **kwargs):
 """
 Delegate a critical call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.critical(msg, *args, **kwargs)

 def log(self, level, msg, *args, **kwargs):
 """
 Delegate a log call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.log(level, msg, *args, **kwargs)

 def isEnabledFor(self, level):
 """
 See if the underlying logger is enabled for the specified level.
 """
 return self.logger.isEnabledFor(level)

root = RootLogger(WARNING)
Logger.root = root
Logger.manager = Manager(Logger.root)

#---
Configuration classes and functions
#---

BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s"

def basicConfig(**kwargs):
 """
 Do basic configuration for the logging system.

 This function does nothing if the root logger already has handlers
 configured. It is a convenience method intended for use by simple scripts
 to do one-shot configuration of the logging package.

 The default behaviour is to create a StreamHandler which writes to
 sys.stderr, set a formatter using the BASIC_FORMAT format string, and
 add the handler to the root logger.

 A number of optional keyword arguments may be specified, which can alter
 the default behaviour.

 filename Specifies that a FileHandler be created, using the specified
 filename, rather than a StreamHandler.
 filemode Specifies the mode to open the file, if filename is specified
 (if filemode is unspecified, it defaults to 'a').
 format Use the specified format string for the handler.
 datefmt Use the specified date/time format.
 level Set the root logger level to the specified level.
 stream Use the specified stream to initialize the StreamHandler. Note
 that this argument is incompatible with 'filename' - if both
 are present, 'stream' is ignored.

 Note that you could specify a stream created using open(filename, mode)
 rather than passing the filename and mode in. However, it should be
 remembered that StreamHandler does not close its stream (since it may be
 using sys.stdout or sys.stderr), whereas FileHandler closes its stream
 when the handler is closed.
 """
 # Add thread safety in case someone mistakenly calls
 # basicConfig() from multiple threads
 _acquireLock()
 try:
 if len(root.handlers) == 0:
 filename = kwargs.get("filename")
 if filename:
 mode = kwargs.get("filemode", 'a')
 hdlr = FileHandler(filename, mode)
 else:
 stream = kwargs.get("stream")
 hdlr = StreamHandler(stream)
 fs = kwargs.get("format", BASIC_FORMAT)
 dfs = kwargs.get("datefmt", None)
 fmt = Formatter(fs, dfs)
 hdlr.setFormatter(fmt)
 root.addHandler(hdlr)
 level = kwargs.get("level")
 if level is not None:
 root.setLevel(level)
 finally:
 _releaseLock()

#---
Utility functions at module level.
Basically delegate everything to the root logger.
#---

def getLogger(name=None):
 """
 Return a logger with the specified name, creating it if necessary.

 If no name is specified, return the root logger.
 """
 if name:
 return Logger.manager.getLogger(name)
 else:
 return root

#def getRootLogger():
"""
Return the root logger.
#
Note that getLogger('') now does the same thing, so this function is
deprecated and may disappear in the future.
"""
return root

def critical(msg, *args, **kwargs):
 """
 Log a message with severity 'CRITICAL' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.critical(msg, *args, **kwargs)

fatal = critical

def error(msg, *args, **kwargs):
 """
 Log a message with severity 'ERROR' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.error(msg, *args, **kwargs)

def exception(msg, *args, **kwargs):
 """
 Log a message with severity 'ERROR' on the root logger,
 with exception information.
 """
 kwargs['exc_info'] = 1
 error(msg, *args, **kwargs)

def warning(msg, *args, **kwargs):
 """
 Log a message with severity 'WARNING' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.warning(msg, *args, **kwargs)

warn = warning

def info(msg, *args, **kwargs):
 """
 Log a message with severity 'INFO' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.info(msg, *args, **kwargs)

def debug(msg, *args, **kwargs):
 """
 Log a message with severity 'DEBUG' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.debug(msg, *args, **kwargs)

def log(level, msg, *args, **kwargs):
 """
 Log 'msg % args' with the integer severity 'level' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.log(level, msg, *args, **kwargs)

def disable(level):
 """
 Disable all logging calls of severity 'level' and below.
 """
 root.manager.disable = level

def shutdown(handlerList=_handlerList):
 """
 Perform any cleanup actions in the logging system (e.g. flushing
 buffers).

 Should be called at application exit.
 """
 for wr in reversed(handlerList[:]):
 #errors might occur, for example, if files are locked
 #we just ignore them if raiseExceptions is not set
 try:
 h = wr()
 if h:
 try:
 h.acquire()
 h.flush()
 h.close()
 except (IOError, ValueError):
 # Ignore errors which might be caused
 # because handlers have been closed but
 # references to them are still around at
 # application exit.
 pass
 finally:
 h.release()
 except:
 if raiseExceptions:
 raise
 #else, swallow

#Let's try and shutdown automatically on application exit...
import atexit
atexit.register(shutdown)

Null handler

class NullHandler(Handler):
 """
 This handler does nothing. It's intended to be used to avoid the
 "No handlers could be found for logger XXX" one-off warning. This is
 important for library code, which may contain code to log events. If a user
 of the library does not configure logging, the one-off warning might be
 produced; to avoid this, the library developer simply needs to instantiate
 a NullHandler and add it to the top-level logger of the library module or
 package.
 """
 def handle(self, record):
 pass

 def emit(self, record):
 pass

 def createLock(self):
 self.lock = None

Warnings integration

_warnings_showwarning = None

def _showwarning(message, category, filename, lineno, file=None, line=None):
 """
 Implementation of showwarnings which redirects to logging, which will first
 check to see if the file parameter is None. If a file is specified, it will
 delegate to the original warnings implementation of showwarning. Otherwise,
 it will call warnings.formatwarning and will log the resulting string to a
 warnings logger named "py.warnings" with level logging.WARNING.
 """
 if file is not None:
 if _warnings_showwarning is not None:
 _warnings_showwarning(message, category, filename, lineno, file, line)
 else:
 s = warnings.formatwarning(message, category, filename, lineno, line)
 logger = getLogger("py.warnings")
 if not logger.handlers:
 logger.addHandler(NullHandler())
 logger.warning("%s", s)

def captureWarnings(capture):
 """
 If capture is true, redirect all warnings to the logging package.
 If capture is False, ensure that warnings are not redirected to logging
 but to their original destinations.
 """
 global _warnings_showwarning
 if capture:
 if _warnings_showwarning is None:
 _warnings_showwarning = warnings.showwarning
 warnings.showwarning = _showwarning
 else:
 if _warnings_showwarning is not None:
 warnings.showwarning = _warnings_showwarning
 _warnings_showwarning = None

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_modules/diceware.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.9.1 documentation »

 		Module code »

 Source code for diceware

diceware -- passphrases to remember
Copyright (C) 2015, 2016 Uli Fouquet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""diceware -- rememberable passphrases
"""
import argparse
import pkg_resources
import sys
from random import SystemRandom
from diceware.config import get_config_dict
from diceware.wordlist import (
 WordList, get_wordlist_path, WORDLISTS_DIR, get_wordlist_names,
)

__version__ = pkg_resources.get_distribution('diceware').version

#: Special chars inserted on demand
SPECIAL_CHARS = r"~!#$%^&*()-=+[]\{}:;" + r'"' + r"'<>?/0123456789"

GPL_TEXT = (
 """
 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.
 """
)

[docs]def print_version():
 """Output current version and other infos.
 """
 print("diceware %s" % __version__)
 print("Copyright (C) 2015, 2016 Uli Fouquet")
 print("diceware is based on suggestions of Arnold G. Reinhold.")
 print("See http://diceware.com for details.")
 print("'Diceware' is a trademark of Arnold G. Reinhold.")
 print(GPL_TEXT)

[docs]def get_random_sources():
 """Get a dictionary of all entry points called diceware_random_source.

 Returns a dictionary with names mapped to callables registered as
 `entry_point`s for the ``diceware_randomsource`` group.

 Callables should accept `options` when called and return something
 that provides a `choice(sequence)` method that works like the
 respective method in the standard Python lib `random` module.
 """
 result = dict()
 for entry_point in pkg_resources.iter_entry_points(
 group="diceware_random_sources"):
 result.update({entry_point.name: entry_point.load()})
 return result

[docs]def handle_options(args):
 """Handle commandline options.
 """
 plugins = get_random_sources()
 random_sources = plugins.keys()
 wordlist_names = get_wordlist_names()
 defaults = get_config_dict()
 parser = argparse.ArgumentParser(
 description="Create a passphrase",
 epilog="Wordlists are stored in %s" % WORDLISTS_DIR
)
 parser.add_argument(
 '-n', '--num', default=6, type=int,
 help='number of words to concatenate. Default: 6')
 cap_group = parser.add_mutually_exclusive_group()
 cap_group.add_argument(
 '-c', '--caps', action='store_true',
 help='Capitalize words. This is the default.')
 cap_group.add_argument(
 '--no-caps', action='store_false', dest='caps',
 help='Turn off capitalization.')
 parser.add_argument(
 '-s', '--specials', default=0, type=int, metavar='NUM',
 help="Insert NUM special chars into generated word.")
 parser.add_argument(
 '-d', '--delimiter', default='',
 help="Separate words by DELIMITER. Empty string by default.")
 parser.add_argument(
 '-r', '--randomsource', default='system', choices=random_sources,
 metavar="SOURCE",
 help=(
 "Get randomness from this source. Possible values: `%s'. "
 "Default: system" % "', `".join(sorted(random_sources))))
 parser.add_argument(
 '-w', '--wordlist', default='en_securedrop', choices=wordlist_names,
 metavar="NAME",
 help=(
 "Use words from this wordlist. Possible values: `%s'. "
 "Wordlists are stored in the folder displayed below. "
 "Default: en_securedrop" % "', `".join(wordlist_names)))
 realdice_group = parser.add_argument_group(
 "Arguments related to `realdice' randomsource",
)
 realdice_group.add_argument(
 '--dice-sides', default=6, type=int, metavar="N",
 help='Number of sides of dice. Default: 6'
)
 parser.add_argument(
 'infile', nargs='?', metavar='INFILE', default=None,
 type=argparse.FileType('r'),
 help="Input wordlist. `-' will read from stdin.",
)
 parser.add_argument(
 '-v', '--verbose', action='count',
 help='Be verbose. Use several times for increased verbosity.')
 parser.add_argument(
 '--version', action='store_true',
 help='output version information and exit.',
)
 for plugin in plugins.values():
 if hasattr(plugin, "update_argparser"):
 parser = plugin.update_argparser(parser)
 parser.set_defaults(**defaults)
 args = parser.parse_args(args)
 return args

[docs]def insert_special_char(word, specials=SPECIAL_CHARS, rnd=None):
 """Insert a char out of `specials` into `word`.

 `rnd`, if passed in, will be used as a (pseudo) random number
 generator. We use `.choice()` only.

 Returns the modified word.
 """
 if rnd is None:
 rnd = SystemRandom()
 char_list = list(word)
 char_list[rnd.choice(range(len(char_list)))] = rnd.choice(specials)
 return ''.join(char_list)

[docs]def get_passphrase(options=None):
 """Get a diceware passphrase.

 `options` is a set of arguments as provided by
 `argparse.OptionParser.parse_args()`.

 The passphrase returned will contain `options.num` words deliimted by
 `options.delimiter` and `options.specials` special chars.

 For the passphrase generation we will use the random source
 registered under the name `options.randomsource` (something like
 "system" or "dice").

 If `options.caps` is ``True``, all words will be caps.

 If `options.infile`, a file descriptor, is given, it will be used
 instead of a 'built-in' wordlist. `options.infile` must be open for
 reading.
 """
 if options is None:
 options = handle_options(args=[])
 if options.infile is None:
 options.infile = open(get_wordlist_path(options.wordlist), 'r')
 word_list = WordList(options.infile)
 rnd_source = get_random_sources()[options.randomsource]
 rnd = rnd_source(options)
 words = [rnd.choice(list(word_list)) for x in range(options.num)]
 if options.caps:
 words = [x.capitalize() for x in words]
 result = options.delimiter.join(words)
 for _ in range(options.specials):
 result = insert_special_char(result, rnd=rnd)
 return result

[docs]def main(args=None):
 """Main programme.

 Called when `diceware` script is called.

 `args` is a list of command line arguments to process. If no such
 args are given, we use `sys.argv`.
 """
 if args is None:
 args = sys.argv[1:]
 options = handle_options(args)
 if options.version:
 print_version()
 raise SystemExit(0)
 print(get_passphrase(options))

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

_modules/diceware/random_sources.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.9.1 documentation »

 		Module code »

 		diceware »

 Source code for diceware.random_sources

diceware -- passphrases to remember
Copyright (C) 2015, 2016 Uli Fouquet and contributors.
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""Sources of randomness.

Please register all sources as entry point in ``setup.py``. Look out for
"SystemRandomSource" for an example.

For developers of interfaces to other sources of randomness: Currently,
you can extend `diceware` random sources by registering a class, that
provides a suitable `__init__(self, options)` and a `choice(self,
sequence)` method. Optionally, you can also provide a `classmethod`
called ``update_arparse`` that will get the possibility to update the
`argparser.ArgumentParser` used by `diceware`.

The `__init__` method of your class will be called with `options`, a set
of options as parsed from the commandline. The initialization code can
use the options to determine further actions or ignore it. The
`__init__` method is also the right place to ask users for one-time
infos you need. This includes infos like the number of sides of a dice,
an API key for random.org or other infos that should not change between
generating different words (but might change from one `diceware` call
to the next).

The `choice` method then, will get a sequence of chars, strings, or
numbers and should pick one of them based on the source of randomness
intended to be utilized by your code. If further user interaction is
required, `choice` might also ask users for input or similar. Typically,
`choice` is called once for each word and once for each special char to
generate.

If you want to manage own commandline options with your plugin, you can
implement a `classmethod` called ``update_argparser(parser)`` which gets
an `argparse.ArgumentParser` instance as argument (no pun intended).

Finally, to register the source, add some stanza in `setup.py` of your
project that looks like::

 # ...
 setup(
 # ...
 entry_points={
 # console scripts and other entry points...
 'diceware_random_sources': [
 'myrandom = mypkg.mymodule:MyRandomSource',
 'myothersrc = mypkg.mymodule:MyOtherSource',
],
 },
 # ...
)
 # ...

Here the `myrandom` and `myothersrc` lines register random sources that
(if installed) `diceware` will find on startup and offer to users under
the name given. In the described case, users could do for instance::

 diceware -r myrandom

and the random source defined in the given class would be used for
generating a passphrase.

"""
import math
import sys
from random import SystemRandom

input_func = input
if sys.version[0] < "3":
 input_func = raw_input # NOQA # pragma: no cover

[docs]class SystemRandomSource(object):
 """A Random Source utilizing the standard Python `SystemRandom` call.

 As time of writing, SystemRandom makes use of ``/dev/urandom`` to get
 fairly useable random numbers.

 This source is registered as entry_point in setup.py under the name
 'system' in the ``diceware_random_sources`` group.

 The constructor will be called with options at beginning of a
 programme run if the user has chosen the respective source of
 random.

 The SystemRandomSource is the default source.
 """
 def __init__(self, options):
 self.options = options
 self.rnd = SystemRandom()

[docs] def choice(self, sequence):
 """Pick one item out of `sequence`.

 The `sequence` will normally be a sequence of strings
 (wordlist), special chars, or numbers.

 Sequences can be (at least) lists, tuples and other types that
 have a `len`. Generators do not have to be supported (and are
 in fact not supported by this source).

 This method should return one item of the `sequence` picked based on
 the underlying source of randomness.

 In the long run, the choice should return each `sequence` item
 (i.e.: no items should be 'unreachable').

 It should also cope with any length > 0 of `sequence` and not
 break if a sequence is "too short" or "too long". Empty
 sequences, however, might raise exceptions.
 """
 return self.rnd.choice(sequence)

[docs]class RealDiceRandomSource(object):
 """A source of randomness working with real dice.
 """
 def __init__(self, options):
 self.options = options
 self.dice_sides = 6
 if options is not None:
 self.dice_sides = getattr(options, 'dice_sides', 6)

[docs] def pre_check(self, num_rolls, sequence):
 """Checks performed before picking an item of a sequence.

 We make sure that `num_rolls`, the number of rolls, is in an
 acceptable range and issue an hint about the procedure.
 """
 if num_rolls == 0:
 raise(ValueError)
 if (self.dice_sides ** num_rolls) < len(sequence):
 print(
 "Warning: entropy is reduced! Using only first %s of %s "
 "words/items of your wordlist." % (
 self.dice_sides ** num_rolls, len(sequence)
)
)
 print(
 "Please roll %s dice (or a single dice %s times)." % (
 num_rolls, num_rolls))
 return

[docs] def choice(self, sequence):
 """Pick one item out of `sequence`.
 """
 if len(sequence) == 1:
 return sequence[0] # no need to roll dice.
 num_rolls = int(math.log(len(sequence), self.dice_sides))
 if num_rolls < 1:
 # If this happens, there are less values in the sequence to
 # choose from than there are dice sides.
 # Check whether len(sequence) is a factor of dice_sides
 if self.dice_sides % len(sequence) == 0:
 num_rolls = 1
 else:
 # otherwise We will perform one extra roll and apply modulo
 num_rolls = 2
 self.pre_check(num_rolls, sequence)
 result = 0
 for i in range(num_rolls, 0, -1):
 rolled = None
 while rolled not in [
 str(x) for x in range(1, self.dice_sides + 1)]:
 rolled = input_func(
 "What number shows dice number %s? " % (num_rolls - i + 1))
 result += ((self.dice_sides ** (i - 1)) * (int(rolled) - 1))
 result = result % len(sequence)
 return sequence[result]

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_modules/diceware/wordlist.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.9.1 documentation »

 		Module code »

 		diceware »

 Source code for diceware.wordlist

diceware -- passphrases to remember
Copyright (C) 2015, 2016 Uli Fouquet and contributors.
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""wordlist.py -- special handling of wordlists.
"""
import os
import re
import tempfile

#: Maximum in-memory file size in bytes (20 MB).
#:
#: This value is used when creating temporary files replacing
#: unseekable input streams. If an input file is larger, we write to
#: disk.
MAX_IN_MEM_SIZE = 20 * 1024 * 1024

#: The directory in which wordlists are stored
WORDLISTS_DIR = os.path.abspath(
 os.path.join(os.path.dirname(__file__), 'wordlists'))

#: A regular expression matching allowed wordlist names. We
#: allow names that cannot easily mess up filesystems.
RE_WORDLIST_NAME = re.compile('^[\w-]+$')

#: A regular expression matching numbered entries in wordlists.
RE_NUMBERED_WORDLIST_ENTRY = re.compile('^[0-9]+(\-[0-9]+)*\s+([^\s]+)$')

#: A regular expression describing valid wordlist file names.
RE_VALID_WORDLIST_FILENAME = re.compile(
 '^wordlist_([\w-]+)\.[\w][\w\.]+[\w]+$')

[docs]def get_wordlist_names():
 """Get a all names of wordlists stored locally.
 """
 result = []
 filenames = os.listdir(WORDLISTS_DIR)
 for filename in filenames:
 if not os.path.isfile(os.path.join(WORDLISTS_DIR, filename)):
 continue
 match = RE_VALID_WORDLIST_FILENAME.match(filename)
 if not match:
 continue
 result.append(match.groups()[0])
 return sorted(result)

[docs]def get_wordlist_path(name):
 """Get path to a wordlist file for a wordlist named `name`.

 The `name` string must not contain special chars beside ``-``,
 ``_``, regular chars ``A-Z`` (upper or lower case) or
 numbers. Invalid names raise a ValueError.

 If a path with the given name (names are not filenames here) does
 not exist, `None` is returned.
 """
 if not RE_WORDLIST_NAME.match(name):
 raise ValueError("Not a valid wordlist name: %s" % name)
 for filename in os.listdir(WORDLISTS_DIR):
 if not os.path.isfile(os.path.join(WORDLISTS_DIR, filename)):
 continue
 match = RE_VALID_WORDLIST_FILENAME.match(filename)
 if match and match.groups()[0] == name:
 return os.path.join(WORDLISTS_DIR, filename)

[docs]class WordList(object):
 """A word list contains words for building passphrases.

 `path_or_filelike` is the path of the wordlist file or an already
 opened file. Opened files must be open for reading, of course. We
 expect filelike objects to support at least `read()`.

 If a file-like object does not support `seek()` (like `sys.stdin`),
 we create a temporary, seekable copy of the input stream. The copy
 is written to disk only, if it is larger than
 `MAX_IN_MEM_SIZE`. Otherwise the wordlist is kept in memory.

 Please note that open file descriptors are not closed after reading.

 Wordlist files are expected to contain words, one word per
 line. Empty lines are ignored, also whitespaces before or trailing
 a line are stripped. If a "word" contains inner whitespaces, then
 these are preserved.

 The input file can be a signed wordlist. Signed wordlists are
 expected to be ordinary lists of words but with ASCII armored
 signatures (as described in RFC 4880).

 In case of signed wordlists the signature headers/footers are
 stripped and the contained list of words is read.

 WordList are generators. That means, that you can retrieve the
 words of a wordlist by iterating over an instance of `WordList`.

 """
 def __init__(self, path_or_filelike=None):
 self.path = None
 if not hasattr(path_or_filelike, 'read'):
 # got a path, not a filelike object
 self.path = path_or_filelike
 self.fd = open(self.path, "r")
 else:
 self.fd = path_or_filelike
 try:
 self.fd.seek(0)
 except IOError:
 # the given filelike does not support seek(). Create an own.
 self.fd = tempfile.SpooledTemporaryFile(
 max_size=MAX_IN_MEM_SIZE, mode="w+")
 self.fd.write(path_or_filelike.read())
 self.fd.seek(0)
 self.signed = self.is_signed()

 def __iter__(self):
 self.fd.seek(0)
 if self.signed:
 while self.fd.readline().strip():
 # wait for first empty line
 pass
 for line in self.fd:
 line = self.refine_entry(line)
 if not line:
 continue
 elif self.signed and line == '-----BEGIN PGP SIGNATURE-----':
 break
 yield line

[docs] def is_signed(self):
 """check, whether this file is cryptographically signed.

 This operation is expensive and resets the file descriptor to
 the beginning of file.
 """
 self.fd.seek(0)
 line1 = self.fd.readline()
 self.fd.seek(0)
 if line1.rstrip() == "-----BEGIN PGP SIGNED MESSAGE-----":
 return True
 return False

[docs] def refine_entry(self, entry):
 """Apply modifications to form a proper wordlist entry.

 Refining means: strip() `entry` remove escape-dashes (if this is
 a signed wordlist) and extract the term if it is preceded by
 numbers.
 """
 if self.signed and entry.startswith('- '):
 entry = entry[2:]
 entry = entry.strip()
 match = RE_NUMBERED_WORDLIST_ENTRY.match(entry)
 if match:
 entry = match.groups()[1]
 return entry

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.9.1 documentation »

 All modules for which code is available

		diceware

		diceware.config

		diceware.logger

		diceware.random_sources

		diceware.wordlist

		logging

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_modules/diceware/config.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.9.1 documentation »

 		Module code »

 		diceware »

 Source code for diceware.config

diceware -- passphrases to remember
Copyright (C) 2015, 2016 Uli Fouquet
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""config -- diceware configuration

`diceware` is configurable via commandline, configuration files and
direct API calls.

"""
try:
 import configparser # Python 3.x
except ImportError: # pragma: no cover
 import ConfigParser as configparser # Python 2.x
import os

OPTIONS_DEFAULTS = dict(
 num=6,
 caps=True,
 specials=0,
 delimiter="",
 randomsource="system",
 verbose=0,
 wordlist="en_securedrop",
 dice_sides=6,
)

[docs]def valid_locations():
 """The list of valid paths we look up for config files.
 """
 user_home = os.path.expanduser("~")
 result = []
 if user_home != "~":
 result = [os.path.join(user_home, ".diceware.ini"),]
 return result

[docs]def get_configparser(path_list=None):
 """Parse `path_list` for config values.

 If no list is given we use `valid_locations()`.

 Return a list of paths read and a config parser instance.
 """
 if path_list is None:
 path_list = valid_locations()
 parser = configparser.SafeConfigParser()
 found = parser.read(path_list)
 return found, parser

[docs]def get_config_dict(
 path_list=None, defaults_dict=OPTIONS_DEFAULTS, section="diceware"):
 """Get config values found in files from `path_list`.

 Read files in `path_list` config files and return option values from
 section `section` as regular dictonary.

 We only accept values for which a default exists in
 `defaults_dict`. If `defaults_dict` is ``None`` we use
 ``OPTIONS_DEFAULTS``.

 Values are interpolated to have same value type as same-named values
 from `defaults_dict` if they are integers or boolean.

 String/text values are stripped from preceding/trailing quotes
 (single and double).
 """
 result = dict(defaults_dict)
 found, parser = get_configparser(path_list)
 for key, val in defaults_dict.items():
 if not parser.has_option(section, key):
 continue
 if isinstance(val, bool):
 result[key] = parser.getboolean(section, key)
 elif isinstance(val, int):
 result[key] = parser.getint(section, key)
 else:
 result[key] = parser.get(section, key).strip("\"'")
 return result

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

_modules/diceware/logger.html

 Navigation

 		
 index

 		
 modules |

 		diceware 0.9.1 documentation »

 		Module code »

 		diceware »

 Source code for diceware.logger

diceware -- passphrases to remember
Copyright (C) 2016 Uli Fouquet and contributors
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""logging -- output status and other data.

The `logger` provided in this module is meant to be used by other
components for messages to users.

It is named `"ulif.openoffice"` and can, as a singleton, be retrieved by
calling standard lib `logging.getLogger("ulif.diceware")`.

By default it provides a `logging.NullHandler` as libraries normally
do. Other components might add other handlers.

"""
import logging
try:
 from logging import NullHandler
except ImportError: # NOQA # pragma: no cover
 class NullHandler(object):
 """Replacement for `logging.NullHandler` from py3.x standard lib.
 """
 level = None

 def emit(self, record):
 pass

 def handle(self, record):
 pass

 def createLock(self):
 pass

#: Logger that can be used for all diceware related messages.
logger = logging.getLogger("ulif.diceware")
logger.addHandler(NullHandler())

[docs]def configure(verbosity=None):
 """Configure global duceware logger.

 `verbosity` sets the diceware logger verbosity. ``0`` enables info
 mode, while all numbes > 2 enable debug mode.
 """
 if verbosity is None:
 return
 logger.setLevel(logging.CRITICAL)
 if verbosity == 1:
 logger.setLevel(logging.INFO)
 elif verbosity > 1:
 logger.setLevel(logging.DEBUG)
 logger.addHandler(logging.StreamHandler())
 logger.debug("Verbose logging enabled")

 © Copyright 2015, 2016, Uli Fouquet.
 Created using Sphinx 1.3.5.

